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Abstract

In the last years, the huge amount of available data leads
data scientists to look for increasingly powerful systems to pro-
cess them. Within this context, Field Programmable Gate Arrays
(FPGAs) are a promising solution to improve performance of the
system while keeping low energy consumption. Nevertheless, ex-
ploiting FPGAs is very challenging due to the high level of exper-
tise required to program them. A lot of High Level Synthesis tools
have been produced to help programmers during the flow of ac-
celeration of their algorithms through the hardware architecture.
However, these tools often use languages considered low level from
the point of view of data scientists and are still much too difficult
to use for software developers. This complexity limits FPGAs us-
age in a number of fields, from Data Science to Signal Processing.
One way to overcome this problem is to realize Hardware Libraries
of widely used algorithms that transparently offload the computa-
tion to the FPGA device from high level languages commonly used
by data scientists. This work presents different methodologies to
create Hardware Libraries for Desktop and Embedded systems.
We have chosen to focus on R, MATLAB and Python languages.
For what concerns MATLAB and R, the hardware libraries are de-
veloped for Desktop systems by the Reusable Integration Frame-
work for FPGA Accelerators to send and receive data to the FPGA
connected via PCI-Express. We have implemented and tested an
optimized hardware implementation of the Autocorrelation Func-
tion on a Xilinx VC707 board and we reached a speedup of 7x with
respect to the execution on an Intel i7-4710HQ. Python, instead,
is exploited by using the recently released Xilinx PYNQ platform
to create Hardware Libraries for Embedded systems. We have
implemented different optimized versions of some NumPy library
functions for the PYNQ-Z1 Board, that support the PINQ plat-
form. We are able to achieve a speedup of 3.95x for the Integer
Matrices Dot Product algorithm implementation and a speedup
of 10x for the Correlation function.
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Sommario

Negli ultimi anni, la grande quantita’ di dati disponibili ha
portato gli scienziati di dati a cercare sistemi di calcolo che possano
elaborare grandi moli di informazioni ad una velocita’ sempre mag-
giore. All’interno di questo contesto, una soluzione promettente
e’ rappresentata dalle FPGA, architetture hardware riconfigurabili
che consentono di raggiungere elevate performance, pur mantenen-
do un basso consumo di energia. Tuttavia queste architetture sono
difficili da utilizzare a causa dell’alto livello di esperienza richiesto
per riuscire ad implementare vesioni hardware ottimizzate degli
algoritmi. Per far fronte a questo problema, i maggiori produttori
di FPGA hanno sviluppato tool di sintesi ad alto livello, in gra-
do di tradurre codice scritto in linguaggi software di alto livello,
in codice che descrive i componenti hardware da configurare sulla
FPGA. Ma anche questi tool mirano ad aiutare esperti di design
hardware, durante il processo implementativo, e risultano quindi
difficilmente utilizzabili da chi non ha conoscenze specifiche del
settore, come scienziati di dati o sviluppatori software. Questa
barriera d’ingresso sta limitando l’uso delle FPGA in settori dove
potrebbero portare enormi vantaggi, come il settore della scienza
dei dati e del calcolo scientifico. Un modo per risolvere questo
problema e’ quello di implementare Librerie Hardware di funzio-
ni largamente usate in questi settori che consentano di utilizzare
la FPGA in maniera trasparente all’utente finale. Un Libreria
Hardware e’, infatti, formata non solo dal codice necessario per
configurare la board con la funzione desiderata, ma anche dall’in-
frastruttura necessaria per eseguire la funzione direttamente dalle
applicazioni degli utenti finali, scritte in linguaggi di programma-
zione a piu’ alto livello, quindi facilmente utilizzabili da scienziati
di dati e sviluppatori di software. Il nostro lavoro propone diverse
metodologie per implementare Librerie Hardware sia per Sistemi
Desktop che per Sistemi Integrati. Abbiamo deciso di focalizzarci
sui linguaggi a piu’ alto livello R, MATLAB e Python, per la loro
diffusione nei settori della scienza dei dati e del calcolo scientifico.
In particolare, per quanto riguarda R e MATLAB, l’interfaccia e
l’implementazione sono state sviluppate per un sistema Desktop,
sfruttando lo strumento chiamato RIFFA che consente di comu-
nicare dalla CPU alla FPGA, e viceversa, attraverso un cavo di
collegamento PCI-Express. Come caso di studio abbiamo imple-
mentato e testato una versione ottimizzata della funzione di Auto-
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correlazione presente in una delle librerie standard del linguaggio
R. Grazie alle tecniche di parallelizzazione utilizzate siamo stati in
grado di ottenere un tempo di esecuzione della funzione, eseguita
sulla board Xilinx VC707, 7 volte superiore all’esecuzione software
sul processore Intel i7-4710HQ. Per quanto riguarda Python, ab-
biamo sfruttato la tecnologia PYNQ, recentemente rilasciata da
Xilinx, per creare una Libreria Hardware integrata in un sistema
Embedded, composta da alcune funzioni della libreria NumPy.
Dopo aver testato sia le versioni software che quelle hardware sul-
la board PYNQ-Z1 abbiamo misurato uno speedup pari a 3.95x,
per quanto riguarda l’implementazione del prodotto tra matrici
di numeri interi, e uno speedup del 10x per quanto riguarda la
funzione di correlazione.
Il resto della tesi e’ organizzato come segue:

• il Capitolo 1 dà una visione di insieme del contesto di questo
lavoro e brevemente introduce la soluzione proposta;

• il Capitolo 2 fornisce le conoscenze necessarie per capire il
lavoro e presenta una visione di lavori collegati, sottolinean-
done i punti forti e le limitazioni;

• il Capitolo 3 mostra l’implementazione hardware ottimizzata
della funzione di Autocorrelazione e l’implementazione della
libreria hardware per sistemi Desktop;

• il Capitolo 4 fornisce i dettagli dell’implementazione del-
la Libreria Hardware per il sistema integrato sulla board
PYNQ-Z1, la quale supporta la piattaforma PYNQ;

• il Capitolo 5 riporta i risultati dei test effettuati sulle versioni
ottimizzate degli algoritmi selezionati;

• il Capitolo 6 discute i risultati e le limitazioni del nostro
lavoro, e descrive i possibili lavori futuri.
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Introduction 1

Per sicurezza, dubito di tutto.

Cartesio

This chapter provides an introduction to our thesis. In Section 1.1 we
describe the context of this work, while Section 1.2 gives an overview of
our proposed solution, and, finally, Section 1.3 outlines the structure of
this thesis.

1.1 Context Definition

The interest for data-mining, machine learning and signal analysis has
been growing steadily with the need of tools that can process large data,
at higher and higher speeds. The natural consequence has been a shift
from traditional architectures, to High Performance Computing (HPC)
[2] systems with an increasingly high amount of parallelism.

Within this context, Heterogeneous System Architectures (HSAs) [3]
are a promising approach to improve performance of the system while
keeping low energy consumption. An HSA is composed of different kinds
of processing units, like Central Processing Units (CPUs), Graphic Pro-
cessing Units (GPUs) and Field Programmable Gate Arrays (FPGAs),
in a single system to obtain the best resources utilization, in term of ex-
ecution time and power. CPUs can efficiently run generic tasks, GPUs
are optimal for massively parallel repetitive tasks, and FPGAs can be
configured to provide a hardware implementation of a set of instruc-
tions for an efficient execution. According to TOP500 list [4], one of
the most powerful supercomputer in June 2017 is Tianhe-2, a system
that features both Intel Xeon E5-2692 and Intel Xeon Phi 31S1P co-
processor [5], while other supercomputers, like Titan and Piz Daint, are
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1. Introduction

accelerated by NVIDIA GPUs. On the other hand, HSAs appear also
in June 2017 Green500 list [6], the ranking of the most energy-efficient
supercomputers in the world. In fact, the most energy-efficient super-
computer is TSUBAME3.0, a heterogeneous system composed of Intel
Xeon E5-2680 v4 CPUs [7] and NVIDIA Tesla P100 SXM2 GPUs [8].

However, exploiting these architectures to accelerate applications is a
long and hard process that requires time to learn appropriate techniques
to get advantages from the hardware and to prototype and test different
implementations. Because of these reasons many data scientists still use
old tools and libraries of sequential algorithms written in easy-to-use
programming languages with strong abstractions in the context of data
science and signal analysis. In this thesis, we call these languages Higher
Level Languages. By using them, the users can call the functions they
need simply by importing the needed libraries, without a deep knowledge
of software design. Examples of these languages are Python, MATLAB
and R. Modern tools aim at bridging the gap between simplicity and
performance. They allow users to remain in the comfort of Higher Level
Languages while taking advantage of the parallelism of hardware archi-
tectures. Nowadays, GPUs are the most popular choice for improving
the performance of data analysis. This is due to a combination of mul-
tiple factors, such as their availability and the strong investments made
by NVIDIA to promote the parallel computing platform CUDA [9]. The
result is a robust support to the most widely used libraries in data anal-
ysis and computational sciences, and a strong integration with the most
used Higher Level Languages. That said, the interest of data scientists
towards FPGAs has recently spiked, thanks to the higher performance
per watt and flexibility [10] achievable by these architectures with re-
spect to the GPUs. Thanks to they reconfigurable property, FPGAs are
also used to realize heterogeneous embedded systems and devices [11].
The main problem is that they require high level of expertise to exploit
their architecture in the right way and the available tools are intended
only to hardware design experts.

Even though Computer-Aided Design (CAD) tools to target FPGAs
are improving, there is still a gap between the solutions provided by
these CAD tools and the needs of data scientists. Over the last years,
in fact, High Level Synthesis (HLS) tools allowed to rapidly develop IP
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1.2. Thesis Goal

cores and accelerators starting from C code or other languages instead
of writing pure Hardware Description Language (HDL) code; however
the result of this process still need to be integrated at system level and a
set of libraries needs to be written to be ready to use by data scientists.

Nonetheless, ready-to-use libraries and algorithms commonly used in
data science that exploit hardware architectures different from CPUs are
still very scarce in number. Our work provides the basis for the solution
of this problem.

1.2 Thesis Goal

As mentioned in previous Section, the aim of our work is to allow data
scientist and software developer to exploit FPGA architectures transpar-
ently from their applications written in Higher Level Languages, without
approaching the whole hardware design learning path. It is possible to
do that by creating Hardware Libraries of widely used algorithms. An
Hardware Library is composed of the hardware implementations of dif-
ferent algorithms, by the interface to allow the communication between
the CPU, where the user application runs, and the connected FPGA,
and, finally, by the integration in one or more Higher Level Languages to
call hardware functions transparently. In this way end, users can simply
import the Hardware Libraries in their applications, call the functions
they need and obtain results faster.

The first step to achieve this goal is to implement a hardware ver-
sion of one or more algorithms present in the Higher Level Languages
software libraries. Then, it is necessary to apply different hardware de-
sign techniques to optimize the hardware functions and achieve better
performance with respect to the CPU implementation. While imple-
menting the hardware version of the functions, it is also necessary to
implement also the communication infrastructure to send data between
the CPU and the connected FPGA. This depends also on the type of
the target system; in particular, we propose different methodologies for
Desktop and Embedded systems. Finally, the Higher Level Languages
integration is implemented by exploiting some conversion data type and
external function call software libraries.

3



1. Introduction

All these steps are presented in this thesis by using case studies from
data science and scientific computing fields.

1.3 Thesis Organization

The work presented in our thesis is organized as follows:

• Chapter 2 explains the necessary background knowledge to un-
derstand this work and presents an overview of the related work,
underlying the limitations and describing the proposed solution;

• Chapter 3 shows the hardware implementation of the Autocorre-
lation Function (ACF) algorithm and the design of the hardware
library for Desktop systems by exploiting the Reusable Integration
Framework for FPGA Accelerators (RIFFA);

• Chapter 4 describes the design of the hardware library for PYNQ-
Z1 Embedded system by accelerating software functions from Python
libraries;

• Chapter 5 evaluates the results of proposed designs and their inte-
gration by comparing software and hardware implementations in
terms of execution time;

• Chapter 6 presents a general overview of the results of this thesis,
analyzes the limitations of our work, and describes possible future
work.

4



Background and Motivation 2

I believe a leaf of grass is no less than the journey
work of the stars

Walt Whitman, Leaves of Grass

This chapter exposes the background of this thesis, and reviews the
main tools we are going to employ for such purpose. The chapter, at
first, presents an overview of hardware acceleration and the tools we have
used to create the hardware libraries for Desktop and Embedded systems
(Section 2.1), then analyzes the Higher Level Languages and related tools
by underlying their strengths and limitations (Section 2.2). Section 2.3
remarks the motivation of our work and describes our proposed solution.

2.1 Accelerating Algorithms in Hardware

In the computer and electronics world, algorithms can be implemented
and computed both in hardware and software with different pros and
cons. The main advantage of hardware implementation, such as Appli-
cation Specific Integrated Circuits (ASICs), is the achievable high per-
formance, thanks to the highly optimized resources to compute specific
critical tasks. However, ASICs are permanently configured to only one
application and a new fabrication process is necessary to obtain a new
hardware implementation that can compute a different algorithm. The
software solution, on the other hand, provides the flexibility to change
applications and perform a huge number of different task [12], but the
performance is orders of magnitude worse than the one achievable with
the hardware implementation. A trade off between hardware and soft-
ware could be obtained by using programmable hardware, such as GPUs
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2. Background and Motivation

for general purpose computing or FPGAs as reconfigurable devices. In
our work when we refer to accelerating algorithms in hardware, we mean
porting algorithms on GPUs or FPGAs by applying optimization tech-
niques to achieve a better execution time.
Accelerating algorithms in hardware is often convenient if the program
has huge computations. In other cases it is more likely that the pro-
gram may run slower than it does on the CPU. This is because there
are many factors involved to be considered while porting application on
hardware [13]. The first one is memory transfer. The data needs to be
copied from CPU to the hardware device, then optimized computation
is performed and finally the output is transferred back to CPU. This
two-way memory transfer between CPU and hardware device is one of
the important factors in optimization. As each memory access in the
hardware device takes several clock cycles, it is necessary to reduce as
much as possible the number of these accesses from the optimized code.
If possible, memory transfer and computation should be done in paral-
lel to have better performance. Another main aspect is the algorithm
re-engineering. As an example, to exploit the hardware parallelism the
problem must be divisible into smaller identical units that can be ex-
ecuted independently each from another. This re-engineering requires
a very different approach to traditional problem solving in CPU pro-
gramming. Moreover, in terms of accelerating algorithms, it is better to
know the system architecture in advance and to adapt the solution to it
than building a generic solution that can run on more than one archi-
tecture: the same algorithm running on two different hardware devices
may give very different performance. In particular, the solution has to
be designed by keeping in mind: number of cores, memory bandwidth
and input data rate, to gain maximum performance.

2.1.1 Graphics Processing Unit

GPUs are, as of today, the most popular choice when it comes to ac-
celerating data analysis. This is due to a combination of factors, such
as their availability and the strong investments made by NVIDIA to
promote the CUDA project, a platform that enables dramatic increases
in computing performance by harnessing the power of the GPUs [9].
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2.1. Accelerating Algorithms in Hardware

Figure 2.1: CPUs vs GPUs architecture: a CPU consists of a few cores
(white squares on the left) optimized for sequential serial processing
while a GPU has a massively parallel architecture consisting of thou-
sands of smaller, more efficient cores (white squares on the right) de-
signed for handling multiple simpler tasks simultaneously [1].

This has led to the development of multiplatform frameworks such as
OpenCL [14], with also the support of other companies, such as AMD
[15]. The result is a robust support to the most widely used libraries in
data analysis and computational sciences, and a strong integration with
the most used Higher Level Languages. Thanks to their architecture,
GPUs allow to exploit parallelism and gain high performance. Figure
2.1 shows the difference between the number of cores and their dimen-
sion between a CPU and a GPU. In particular, a CPU consists of a
few cores optimized for sequential serial processing, while a GPU has a
massively parallel architecture consisting of thousands of smaller, more
efficient cores designed for handling multiple tasks simultaneously.

In the past, GPUs were intended for graphics computation only.
Thanks to the CUDA platform, the modern GPUs are built to be deeply
programmable and to support high precision computation. They can be
configured by a scalable parallel programming model that extends the
familiar C/C++ environment and allows heterogeneous serial-parallel
computing.

Even if GPUs have thousands of cores that allow to do a huge amount
of computation in parallel and higher upper bound of performance over
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CPUs [1], there are some limitations. As an example, GPUs can reach
better performance over CPUs only with data-level parallelism applica-
tions, while they are slower on purely sequential algorithms due to their
architecture. For that reason, getting advantages on GPUs often implies
give a completely different shape to CPUs well designed algorithms and
small changes in code can produce different orders of performance due to
architectural constraints [16]. Moreover, a GPU can not automatically
save data to disk if the memory is full (this is especially relevant with
some specific languages, such as MATLAB, which can automatically
store data on disk if needed, e.g. when operating on large matrices).
It operates on vectors of integers and floats, but can not use strings,
characters or other data structures. Finally, GPUs do not fare well with
control flow instructions: it is better to leave the control flow to the CPU
and let the GPU handle the mathematical computation (while keeping
in mind that there could be bottlenecks related to data transfer). In par-
ticular, GPUs should be used with high amounts of tasks that can be
executed in parallel, to take advantage of the higher amount of (slower)
processing units, and to minimize the delay caused by data transfer.

2.1.2 Field Programmable Gate Array

FPGAs are field programmable semiconductor devices that can imple-
ment arbitrary logic at hardware level, defined by the developer: it is
possible to define the operations, the functions and the interconnections
to maximize the throughput of a specific task, which is often computa-
tionally intensive and inadequate to be carried out on different archi-
tectures. In particular, they can be used to efficiently perform compu-
tations adapting their programmable structure to a specific algorithm
or to a specific part of that [17]. Often, the computationally intensive
parts of a program are offloaded to an FPGA, leaving the CPU with
less-demanding and serialized code. Figure 2.2 shows the main compo-
nents of the FPGA architecture [18]. An FPGA is composed of a bi-
dimensional matrix of elements called Configurable Logic Blocks (CLBs),
a programmable interconnect network to connect the logic blocks, some
Input/Output Blocks (IOB) at the periphery of the device that act as
the interface between the circuit and the external world and other re-
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sources (e.g., clock network, BRAM, DSPs, general purpose processors).
A CLB can contain a single basic logic element (BLE), or multiple in-
terconnected BLEs grouped together. BLE is a configurable combina-
tional circuit, usually implemented by means of lookup tables (LUT),
devices able to store any n-input combinational function. The FPGA
architecture can be programmed to provide high levels of parallelism by
applying the same operations on multiple data at once, or by carrying
out different operations on multiple data. In fact, thanks to their recon-
figurable property, FPGA can cover all cases of the Flynn’s taxonomy
[19] depending on how they are programmed. Modern FPGAs

As in GPUs, the number of cores of FPGAs architecture is so high
that traditional parallelization techniques are no longer effective, and it
is necessary to exploit the parallel structure of algorithms at a finer level.
Parallelism in FPGAs is achieved at task/data level, by building many
workers that apply given functions to the data, and at instruction level,
within each worker. Moreover, it is possible to change the data precision
in the computation to achieve better performance with negligible error
in the results; indeed, in many scenarios, the use of 64 bits operands is
expensive and unnecessary. In FPGAs it is easy to mix instructions that
work at different levels of precision, even different to the standard 32/64
bits used in Von Neumann machines; as an example, this technique
allowed to achieve a 60x speedup over traditional architectures in the
case of Lower Upper factorization [20]. Finally, FPGA cores should be
able to communicate through high speed links, and should be designed
taking into account their desired functionality (such as general purpose
arithmetic and efficient vector product).

The main advantage of FPGAs is that they give the possibility to
implement a computational architecture that is tailored to a specific al-
gorithm instead of the fixed architecture of CPUs. Then it is possible to
change quickly the FPGAs configuration to do different computations on
the same piece of hardware. Moreover, FPGAs can reach higher perfor-
mance with a lower consumption of power, compared to other hardware
used as co-processor [21]. However, the possibility to implement a com-
putational architecture implies the capacity to solve the problem from
an hardware point of view. In fact, the communication between the FP-
GAs and the CPUs can introduce problems in term of bandwidth and

9



2. Background and Motivation

Figure 2.2: FPGAs Generic Architecture: an FPGA is composed of
CLBs (black squares), Interconnections (gray lines) and IOBs (external
white squares). All the components can be programmed to tailor the
hardware architecture to a specific algorithm.

latency that can determine the failure of the attempt of acceleration
[17]. Finally, the design time of the optimized algorithm is very long,
especially if the developer is not an expert of FPGAs and needs to face
with the limited resources of the boards.

2.1.3 Hardware Description Languages and High Level
Synthesis Tools

Hardware Description Languages (HDLs) are programming languages
used to describe the structure and behavior of digital circuits and can
be used to directly program FPGAs. The most popular are VHDL and
Verilog and they are officially endorsed IEEE (Institute of Electrical
and Electronics Engineers) standards [22]. Most Computer-Aided De-
sign (CAD) tools available in the market support these languages and
there are some applications to translate high level languages to HDL,
based on some specifications given by the programmer. However writing
or generating HDL code to obtain the desired functionalities with good
enough performance is a process that requires a hardware design knowl-
edge with specialized skills, and not a simple operation of translating.
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For that reason, in the last years, a lot of tools are release to convert
high level languages into HDL. These tools are called High Level Syn-
thesis tools and one of them we used within this thesis is Vivado HLS
[23]. These tools allow to put some special instructions, in the appli-
cation code, to generate different hardware architectures and behaviors.
However, without a deep knowledge of hardware acceleration, it is very
difficult to obtain good results, so only FPGA experts could really ex-
ploit them. This limits also the usage of the HDLs.

2.1.4 Reusable Integration Framework for FPGA
Accelerators

RIFFA is a framework for communicating data from a host CPU to a
connected FPGA via a PCI Express bus [24]. The framework requires a
PCIe enabled workstation and a FPGA on a board with a PCIe connec-
tor. RIFFA supports Windows and Linux, Altera and Xilinx. The two
main functions on software side are data send and data receive. These
functions are exposed via user libraries in C/C++, Python, MATLAB,
and Java. The driver supports multiple FPGAs (up to 5) per system. On
the hardware side, users access an interface with independent transmit
and receive signals. The signals provide transaction handshaking and
a first word fall through FIFO interface for reading and writing data.
No knowledge of bus addresses, buffer sizes, or PCIe packet formats is
required. Simply send data on a FIFO interface and receive data on a
FIFO interface. RIFFA does not rely on a PCIe Bridge and therefore
is not subject to the limitations of a bridge implementation. Instead,
RIFFA works directly with the PCIe Endpoint and can run fast enough
to saturate the PCIe link.

2.1.5 Xilinx PYNQ platform

For what concern Embedded systems, we have seen a great opportunity
in the recently released Xilinx Python productivity for Zynq (PYNQ)
platform [25] that allows users to exploit the benefits of FPGAs directly
and transparently from their applications written in Python. The board
is based on Xilinx ZYNQ technology that integrates a dual-core ARM
Cortex-A9 processor (referred to as the Processing System (PS)), with
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Figure 2.3: ZYNQ Block Diagram

an FPGA fabric (referred to as Programmable Logic (PL)). The Overlays
paradigm, or hardware libraries, introduced by these platform allows to
extend user applications by programming the PL part of the device in a
transparent way and to offload part of the computation from the PS part.
In this way, it is possible to exploit the FPGA of the board to accelerate
the desired application and to provide a software interface written in
Python to execute it. Moreover, how it is shown in Figure 2.3, the PL
part can directly access to different peripherals, so the user can configure
the board to acquire and analyze signals directly on the FPGA, before
passing them to the CPU. The figure also shows the main components
of the board, and the presence of the Memory interface that allows com-
munication directly from PS to PL part. Thanks to that, it is possible
to exploit the communication directly from Python application running
on the CPU.

2.2 Higher Level Languages

In the last years, the huge amount of data available and the advent of
Machine Learning have allowed the field of Data Science to become more
and more popular by impacting on the behavior and the results of a large
number of sectors, from Medical Fields to Business Intelligence and An-
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alytics [26, 27, 28]. Within this scenario, a lot of Data Science software
libraries have been developed for some high level languages to allow the
data scientists to use them in an easier way, without a deep knowledge
of software design. In our work, we call these programming languages,
with strong abstractions in the context of Data Science and Scientific
Calculus, Higher Level Languages. By using these languages, the devel-
opers can take advantage of the algorithms they need in a transparently
way, by simply importing the software library and calling the desired
function.

We have chosen to focus on MATLAB [29], Python [30] and R [31],
three Higher Level Languages widely used for Statistical Computing
and Data Analysis [32]. The following is a list of relevant libraries in
the field of Data Science and Scientific Calculus, to offload part of the
computation from the CPU to an external device. In fact, these libraries
support different hardware architectures to obtain better performance
and lower energy consumption than using a general purpose processor.
As described in Chapter 1, we are interested in programmable hardware,
such as GPUs and FPGAs, thanks to their performance and flexibility.

2.2.1 MATLAB

Despite its decline in popularity in the fields of machine learning and
data mining, MATLAB still provides an extremely robust support for
GPU acceleration; it features a wide array of GPU-enabled functions
[33], ranging from basic linear algebra to specific tasks [34] such as sig-
nal processing and bio-informatics. The interaction between MATLAB
and the GPU is accomplished by the Parallel Computing Toolbox [35],
which is based on the CUDA library. The main building block of the
Parallel Computing Toolbox is the gpuArray: it is possible to cast any
MATLAB array to gpuArray, and by doing so the original array will
be loaded into the GPU memory, ready to be used. Any instruction
that operates on that array will be executed automatically on the GPU,
transparently to the user (provided that the instruction is executable by
the GPU). Results of the operations executed by the GPU are stored
into the GPU memory, but are accessible by the user as if they were
saved in main memory (as an example, the plot does not require any
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special command to access a gpuArray). Results can be brought back
to main memory at any time, by using gather. gather will convert the
gpuArray as an array of the appropriate datatype (if the original array
was made by floats, the new array will also contain floats). It is pos-
sible to create objects (i.e. gpuArrays) directly on the GPU, without
building them as standard arrays and converting them to gpuArrays.
arrayfun can apply a given function to the elements of a gpuArray,
in parallel. Performance of GPU-accelerated MATLAB code benefits
greatly from vectorialized code, which takes advantage of the inherent
parallelism of the GPU architecture. It is also possible to write directly
[36] CUDA code which is integrated to MATLAB: albeit harder than
using ready-to-run functions, writing customized accelerated code can
benefit the most advanced applications. MATLAB also support FPGA
though HDL Coder [37] and HDL Verifier [38]: these tools can synthesize
MATLAB code into HDL, and can be used to port algorithms written
in MATLAB to an FPGA. That said, there are currently no MATLAB-
FPGA integrations that can rival the Parallel Computing Toolbox in
terms of robustness and availability of ready-to-use functions.

2.2.2 Python

Being one of the most widely used programming languages, Python
also offers a large number of options in terms of acceleration, spanning
both general purpose parallel programming and acceleration of domain-
specific tasks. Python can be accelerated via GPU in many ways: two
popular general purpose options are PyCUDA [39] and the Anaconda Ac-
celerate [40] package. PyCUDA allows users to call the CUDA API and
CUDA C kernels that can be integrated and executed in Python; GPU
programming can be kept at a more abstract level by using gpuArray
[41], which loads data to the GPU and run instructions on them with-
out having to write CUDA code. PyCUDA also offers high-performance
linear algebra, by using gpuArray in conjunction with NumPy [42], a
software library for scientific computing. Moreover, Anaconda Acceler-
ate can automatically accelerate functions by using @vectorialize [43],
without the need to write GPU-specific code. It also offers bindings to
CUDA libraries [44] such as cuBLAS and cuRAND.
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In the field of machine learning, a popular Python library is Theano
[45], which offers optimized operations on tensors and supports symbolic
expressions [46]. The latter is especially useful for machine learning
and optimization problems, where it is often needed to compute the
gradient of objective functions whose order is dependent on the structure
of the data. Theano generates C code for most of its mathematical
operations, and then converts them (along with variables) to a graph
structure [47]. This is what allows the evaluation and differentiation
of symbolic instructions, and the steeper learning curve of Theano is
rewarded by higher performance and flexibility.

MyHDL [48] is a hardware description language that can generate
Verilog/VHDL from Python code. The idea is to provide to program-
mers a simple tool to exploit the performance of FPGAs, without hav-
ing to learn the intricacies of low-level hardware description languages.
It should be noted that MyHDL merely converts Python code to Ver-
ilog/VHDL, and does not provide any logic synthesis.

2.2.3 R

The language R is widely used for statistical computing and data-analysis,
but its out-of-the-box performance is not well suited to deal with the
tremendous size of data which is often encountered in these fields. Luck-
ily, there exists a number of ways to accelerate the performance of R and
bring it on par with more performing languages. A common approach
is to use the Rcpp [49] package, which interfaces R to C++: even with-
out resorting to any parallelization, the improvements over standard R
are substantial [50]. Rcpp maps R data types (called SEXP) to equiva-
lent C++ classes, but is also able to wrap traditional C++ data types
and STL containers to their R equivalent. The high degree of flexibil-
ity offered by the package makes it well suited for further accelerations,
by using multi-core processors, GPUs or FPGAs. Interfacing R to a
GPU can be done by using the gputools [51] package: GPU tools make
use of NVIDIA’s CUDA language to accelerate numerous data-mining
and linear algebra algorithms, such as the distance between vectors, QR
decomposition and hierarchical clustering. The popularity of the pack-
age is given to its ease of use, as it does not require any knowledge of
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CUDA or other languages. Similarly to MATLAB, it is possible to in-
terface R directly to a GPU though CUDA programming [52]. Finally,
other packages [53] and tools [54] exist to perform parallel computing
by exploiting multi-core CPU systems. As an example, Rmpi [55] is an
interface (wrapper) to MPI APIs.

To the best of our knowledge, there are no libraries to connect R
applications to FPGAs.

2.3 Problem Definition and Proposed Solution

The need of using alternative solutions to standard CPU and multi-
core architectures in the field of data science and signal processing is
caused by the availability of unprecedented amount of data to process
[56]. Highly parallel architectures, such as GPUs and FPGAs, could be
a valid solution to improve the system performance. In fact, both these
architectures can be configured to perform Single Instruction Multiple
Data computation [57] to accelerate the processing of a large amount of
data. Moreover, FPGAs can exploit instruction level parallelism through
computational pipelines and, in some cases, hide data transfer latency.
The interest of data scientists towards FPGAs has recently spiked, due
to the computational power and performance per watt offered by these
architectures. The benefits of FPGAs for scientific algorithms have been
demonstrated multiple times by works implementing accelerators for dif-
ferent problems. One example is the Data Mining field, where, over the
last years, multiple works have proposed FPGA solutions to the imple-
mentation of clustering algorithms. As an example, an implementation
of a K-Means algorithm has been proposed in [58], while [59] presents a
solution for DBSCAN. Some related works about Crosscorrelation Func-
tion are proposed in [60, 61], but they use different variants of the al-
gorithm to achieve different results with respect to the one proposed in
our work.

Nevertheless, FPGAs are still seen by many as obscure and hard
to program, which results in a low amount of tools available for these
platforms. As described in Section 2.2 there exists a small number of
ways to program FPGAs by using Higher Level Languages, but little
to do transparent integration to them, to the contrary of what happens
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for GPUs. Often the FPGA-based accelerator is interfaced with the
CPU through a host function, written in C/C++, that sends data to
the FPGA device and receives back results [62, 63]. This is also the way
to interface an FPGA accelerator that exploits the OpenCL standard
[64, 65]. The possibility to target FPGA by starting from the OpenCL
language [66] is a solution that is gaining traction over the last years,
in the context of simplifying the development of hardware cores and the
runtime for FPGAs in general. This solution is the one adopted by Xilinx
with SDAccel tool [67, 68]. However, as mentioned before, the result is
provided to the end user as a C/C++ application difficult to be used by
data scientists within their Higher Level Languages applications.

Our solution explores different techniques to solve this problem by
creating hardware libraries that allow users to exploit FPGA from Higher
Level Languages in a transparent way. In particular, Higher Level Lan-
guage has the possibility to connect to external libraries and languages
by providing specific libraries for converting its internal objects to the
ones of the target library or languages. This is the case for MATLAB
with the MEX files [69, 70], for Python with CFFI [71] and R with Rcpp
[49]. This is the starting point when a Higher Level Language has to
be extended to support external libraries and components. It is also
possible to connect different Higher Level Languages to the same host
function and exploit the build once re-use many times paradigm simply
by creating a specific interface for each language to be connected. The
second step is to implement the communication between the CPU and
the connection FPGA. We also propose different methodologies to do
this step, both for Desktop and Embedded systems. In particular, we
exploit RIFFA to implement the communication through PCI-Express
(PCIe) and the PYNQ platform Overlays concept to implement the com-
munication for embedded devices equipped with ZYNQ technology [72].
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See what no one else sees. See what everyone chooses
not to see... out of fear, conformity or laziness. See
the whole world anew each day!

Patch Adams

This Chapter presents the definition of the Autocorrelation Func-
tion algorithm, as well as the description of its software implementation
in R, the analysis of its complexity obtained with an initial profiling
phase and some consideration of why this algorithm is suitable for being
accelerated on FPGA. Then, in Section 3.2, we describe the hardware
implementation, the design within a Desktop system by using RIFFA
and, finally, the integration with Higher Level Languages.

3.1 Autocorrelation Function

The first algorithm we have decided to accelerate is from the signal pro-
cessing field: the Autocorrelation Function (ACF) [73]. This algorithm
is not only important per se, but it is also a building block of other
algorithms such as the Principal Component Analysis or, in general, al-
gorithms that perform dimensionality reduction on datasets by selecting
only the most relevant/descriptive features.

3.1.1 Definition

Given two univariate random processes X, Y , with values x1, x2, ..., xn,
y1, y2, ..., yn over a time-span 1, ..., n, and defined a lag τ , the empirical
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(or sample) Correlation Function (CF) ρ̂X,Y (τ) is defined as:

ρ̂X,Y (τ) =

∑n−τ
i=1 (xi − x̄0)(yi+τ − ȳτ )√∑n−τ

i=1 (xi − x̄0)2
√∑n−τ

i=1 (yi+τ − ȳτ )2

with

x̄0 =
1

n− τ

n−τ∑
i=1

xi

ȳτ =
1

n− τ

n∑
i=τ+1

yi

the sample means of X and Y over interval n− τ . By changing the
value of τ , we model the empirical CF of the processes X and Y , which
shows the correlation between the processes at various times. The CF
shows the degree of similarity of process X with process Y , shifted by a
value τ .

If process X is equal to process Y , we get the empirical ACF, that
represents the internal similarities of the process with itself. Under the
hypothesis of equi-spaced observations one can replace X with Y in the
above formula and obtain the following Autocorrelation function rY (τ)

for process Y with lag τ :

rY (τ) =

∑n−τ
i=1 (yi − ȳ0)(yi+τ − ȳτ )√∑n−τ

i=1 (yi − ȳ0)2
√∑n−τ

i=1 (yi+τ − ȳτ )2

with y1, y2, ..., yn values of Y over a time-span 1, ..., n, and

ȳ0 =
1

n− τ

n−τ∑
i=1

yi

ȳτ =
1

n− τ

n∑
i=τ+1

yi

the sample means of Y over interval n− τ . ACF gives information about
the randomness of the process and it helps to identify an appropriate
time series model (if several lag values are analyzed) [74].
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3.1.2 R Implementation

The default ACF implementation, available in R libraries as part of
package stats, processes the input signal into the main routine written
in R and then calls a subroutine written in C that computes and re-
turns the final ACF values. The main parameters are a process Y with
values y1, y2, ..., yn over a time-span 1, ..., n (defined as a univariate or
multivariate time series or a numeric vector or a matrix) and the desired
maximum lag (lag_max).

The R implementation of the function is composed of two steps. In
the first one R creates the input data to be used for the C subroutine.
In this step R creates a time series from the input Y and it computes
the sample mean ȳ of Y as:

ȳ =
1

n

n∑
i=1

yi

After this, it replaces values of Y with their depolarized value:

ŷi = yi − ȳ ∀ i ∈ [1, n]

At this point the C subroutine is invoked.
The C subroutine does the following steps:

1. for each lag τ ∈ [0, lag_max] it computes the corresponding Sam-
ple Autocovariance Function γ̂(τ) of the input time series (obtained
using the normalization by n instead of n− |τ |):

γ̂Y (τ) =
1

n

n−τ∑
i=1

(yi − ȳ)(yi+τ − ȳ) =
1

n

n−τ∑
i=1

(ŷi ŷi+τ )

2. for each lag τ ∈ [0, lag_max] it computes the corresponding Sam-
ple ACF r̂(τ) of the input time series:

r̂Y (τ) =
γ̂Y (τ)

γ̂Y (0)
=

∑n−τ
i=1 (ŷi ŷi+τ )∑n

i=1(ŷi)
2

3. it returns the corresponding ACF r̂Y (τ) vector obtained
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3.1.3 Profiling

We characterized R implementation of ACF over multivariate signals
with increasing number of samples and dimensions, and reported the
overall performance of the algorithm, in terms of execution time and
quantity of memory allocated/deallocated. To visualize the profiling re-
sults we used Profvis, a tool available from GitHub [75]. Profvis samples
the state of the function call stack, by stopping the R interpreter at fixed
time intervals (by default, every 10ms). Since R sampling profiler results
for each execution could be slightly different from one to another [76],
we have executed the same profiling test functions multiple times and
we have reported the average of the results. Tests have been executed
on a Notebook with Intel Core i7-4710HQ CPU (2.50 GHz / 3.50 GHz, 4
core, 6 MB CACHE L3) and 4 GB DDR3L-1600 RAM (3,89 GB usable).
To have a meaningful representation of how the performance of the algo-
rithm scale with respect to the size of the dataset, we have changed value
of lag_max from the default value: lag_max = 10 · log10(nPts/nDim)

with nPts being the number of samples and nDim the number of di-
mensions of the input signals, to: lag_max = (nPts/2). This is a
reasonable hypothesis, if the number of samples is considerable, as in
our case, because high ACF values can be found at the extremes of the
signal.

The results of our profiling phase is presented in Figure 3.1 and
Figure 3.2. Figure 3.1 shows how the execution time (on y-axis) of the
ACF, performed on CPU, increase by using univariate signals with a
number of points ranging from 50K to 300K (on x-axis). The increase in
time complexity is quadratic with respect to the dataset size. Figure 3.2
shows the execution time (on y-axis) of the ACF performed on CPU by
using a signal with a fixed amount of points (30K), and an increasing
number of dimensions (from 1 to 10) (on x-axis). Once again, the scaling
of execution time is quadratic.

By inspecting the source code, we can compute the arithmetic inten-
sity of the algorithm. We considered the number of memory accesses to
floating point values, and the number of sums and multiplications per-
formed on floating point values. If n is the number of points of the input
signal, p is the number of dimensions, with N = n ·p, and L is the maxi-
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Figure 3.1: Profiling results of ACF on CPU for univariate signals in
terms of execution time. The increase in time complexity is quadratic
with respect to the dataset size.

mum lag considered in the computation, then the input of the algorithm
have approximatively size N and its output has size p2 ·L. The number
of floating point memory accesses will be about Lp2(3 + 6n) + Lp2 + p

which can be asymptotically rewritten as 6Lp2n. The number of sums
is Lp2n + 2Lp2 approximatively equal to Lp2n. The number of mul-
tiplications is Lp2(1 + n) + 2Lp2, i.e. Lp2n. Note that we considered
of equivalent complexity multiplications and divisions. p square roots
are also performed: their number is, however, negligible compared to
the ones of the other operations. As a result, the ratio between floating
point operations (FLOPs) and memory accesses is:

FLOPs

Memory accesses
=
Lp2n+ Lp2n

6Lp2n
=

1

3
= O(1)

while the arithmetical intensity, defined as ratio between the number of
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Figure 3.2: Profiling results of ACF on CPU for multivariate signals in
terms of execution time. The increase in time complexity is quadratic
with respect to the dataset size.

floating point operations and the input size is:

FLOPs

InputSize
=
Lp2n+ Lp2n

np
≈ Lp

If the maximum lag L is considerable, with an order similar to the num-
ber of points n, the arithmetical intensity becomes:

Lp ≈ np = N

From the results we obtained, it seems possible to improve the perfor-
mance of ACF in a number of ways:

• Dimensionality scaling : in an n-dimensional signal, the computa-
tion of the correlation function between two of its dimensions is
fully independent of the computation of the correlation functions
of other dimensions. As a consequence, it is possible to evalu-
ate in parallel the different correlation functions of the different
components of the signal.
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• Lag : taken the ACF of a univariate signal, the values of this func-
tion can also be computed independently from one to another. As
an example, the value of the ACF r̂Y (τ = 0) can be computed
separately from r̂Y (τ = 1).

• Points: in a given correlation function, for each value of lag, it
is necessary to compute many vector products of the time series
that compose the signal; the vector product is well suited to be
accelerated in a number of ways, such as by making use of pipelined
architectures or systolic arrays.

3.2 Proposed Design

The proposed design describe the implementation of ACF acceleration
for univariate signals. The solution presented here can be trivially ex-
tended to support multivariate signals, but this is not generally useful in
practice. To support multivariate signals, it would suffice to re-use mul-
tiple times our implementation, with different signals as input. However,
we believed more valuable to focus our efforts on optimizing as much as
possible the base case of ACF and to put aside these extensions. How-
ever, we show in Chapter 4 how it is possible to extend the proposed
design of ACF to compute the CF between two different univariate sig-
nals.

The first design challenge is that we need to take care on how our
core accesses to the input data. In fact, the R implementation has the
possibility to access each point of the signal from the host DDR using
any stride and type of access with almost no loss in performance due to
host cache and pre-caching mechanisms. However on FPGAs random
access to DDR on board is a costly operation that can take hundreds
of clock cycles. For this reason, to achieve low memory access latencies,
it is required to use registers (in the form of LUTs) and BRAM, which,
however, are available in limited quantities. It is, in fact, possible to
store a reasonable amount of data on the FPGA DDR (from 512MB to
a few GB), if needed, but cores can only access BRAMs and registers
efficiently which can store data in the order of KB or at most MB.
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Figure 3.3: Interface of the realized hardware accelerator. The core has
two input streams and one output stream. DMAs are used to send and
received data between DDR memory and the hardware accelerator.

However, if we look at the data access pattern of our ACF we can
see that data are accessed sequentially from memory. Thanks to this, we
can design our core to be able to accept data from a streaming interface,
so that we do not need to store the whole input signal into local BRAM,
but the core can simply access the data from the input streams when new
data are needed. A controller is then needed to feed the input streams of
the core with the data in the correct order. Being the access sequential,
such controller can simply by a DMA which is instructed to copy data
from one location to the input stream. Our implementation of the ACF
needs 2 input streams, one for the original signal, and one for the lagged
one, and an output stream for collecting the output data. This structure
defines the interface of our core, as presented in Figure 3.3. The streams
are 32 bits wide to accommodate float data which is the datatype used
for implementation. Vivado HLS easily allows to define streams and to
define the protocol used to communicate with the external component by
means of #pragma directives. We configured the core to use the standard
AXI Stream protocol to communicate with Xilinx DMA cores that will
be used to feed data to the core.

After defining the core interface we now describe how we imple-
mented the computation of the ACF. At first, we focused on using as
little resources as possible inside the core, by exploiting a stream of in-
put data with an appropriate structure: the idea is that to compute
the i-th point of the ACF, we need to multiply each point of the sig-
nal with the other points, shifted by i. To do so without having to
store the entire signal, or all the values of the ACF, inside the core,
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Figure 3.4: Schema of the first FPGA implementation of the ACF. The
core has two input streams: one with the signal repeated for each lag to
be computed, and the other with the padded shifted signal repeated for
each lag to be computed. At each iteration, the core outputs the value
of ACF for the lag of that iteration.

we used the 2 input streams in the following way: one contains the
signal (with size num_points), and another contains the signal shifted
by an amount i. After reading the entire signal, we can output the
ith value of the ACF. This process is repeated lag_max times, the
desired length of the output. Overall, we need to pass to the cores
(2 · num_points · lag_max) values, as it is shown in Figure 3.4. By
using hardware pipelining, it is possible to mask the cost of expensive
multiply-and-accumulate operations, and read from the streams at ev-
ery clock cycle. This implementation of the algorithm requires about
(num_points · lag_max) operations, and its time complexity can be
approximated to O(n2), while its spatial complexity is O(1). Unfortu-
nately, having to read (2 · num_points · lag_max) becomes extremely
expensive even for signals of moderate length: as an example, computing
the ACF of a signal of size 50K with a lag_max of 25K, and a clock
frequency of 100MHz, would require:

50K · 25K

100 · 106 Hz
= 12.5 s

while in R this computation would take about 1.5 s.
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Moreover, this is an estimation based on the clock cycles required to
read data, without taking into account the maximum bandwidth avail-
able for the data transfer in the hardware integration, which may slow
down execution. It is clear that to achieve high performance it is not
enough to take advantage of hardware parallelism, but it is required to
lower the amount of data transferred from the main memory. To do
so, we decided to add two local buffers inside our core, to store a small
portion of the input signal and reduce the input streams size of a factor
B (the local buffer size). The idea is that the product of a point xi and
the points in the range [xi+lag, ..., xi+lag+B] will be used to compute
the ACF values in the range [lag, ..., lag+B]. To compute the value of
ACF at position lag, with lag in the range [1, ..., lag_max], we need
to multiply and accumulate every point in the original signal and in the
signal shifted by a value lag. By using a local buffer that behaves as a
shift register, it is possible to compute B values of ACF in parallel; their
partial values are stored in the second local buffer, and are written to
the output stream only when every pair {xi, xi+lag} has been read from
the streams. The input streams can be considered divided into blocks:
each block has size num_points and allows to compute the ACF val-
ues in the range [1, ..., lag_max]. The number of blocks is equal to
lag_max/B. The blocks in the first input stream contain the full sig-
nal. The blocks in the second input stream contain the signal shifted
by B · block_number. Figure 3.5 shows the delay caused by the initial-
ization of the shift register at the beginning of each block. Once again,
by employing hardware pipelining and loop unrolling, we were able to
mask the latency of multiply-and-accumulate operations. The number
of operations done by the algorithm is still num_points · lag_max, ap-
proximated to quadratic time complexity O(n2), but now it is required
to have two buffers of size B (which is still a O(1) spatial complexity, in
fact, B depends only on the available hardware resources). However, as
many operations are done in parallel, the execution time of the algorithm
is proportional to the input streams size: the local buffers reduce the
stream size by a factor B, which in turn reduces the complexity of the
algorithm by the same factor. Our reference board, the Xilinx VC707
[77], supported buffers of floats of size 200, partitioned into blocks of 50

floats each, so that it is possible to access 50 data in parallel realizing a

28



3.3. RIFFA Integration

𝒚𝒏 … 𝒚𝟐𝒚𝒏 … 𝒚𝒏−𝝉𝒎𝒂𝒙
… 𝒚𝟏 …

…

𝒍𝒂𝒈_𝒎𝒂𝒙

𝑩
… i

0 … 0 𝒚𝒏 … 𝒚𝑩∙𝝉𝒎𝒂𝒙+𝟏 0 … 𝒚𝑩+𝟏+ i

𝑨𝑪𝑭𝒊+𝑩 … 𝑨𝑪𝑭𝒊+𝟏 𝑨𝑪𝑭𝒊

𝒓𝒆𝒔𝑩 … 𝒓𝒆𝒔𝟏 𝒓𝒆𝒔𝟎

𝒚𝑩+ i … 𝒚𝟐+ i 𝒚𝟏+ i

B

(𝐵 − 1) ∙
𝑙𝑎𝑔_𝑚𝑎𝑥

𝐵
+ 1 + 2 ∙ 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑠 ∙

𝑙𝑎𝑔_𝑚𝑎𝑥

𝐵
+ 1

∗

+

(𝐵 − 1)

…

𝑡𝑖𝑚𝑒 𝑡𝑜 𝑖𝑛𝑖𝑡 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑙 𝑏𝑢𝑓𝑓𝑒𝑟 + 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝐴𝐶𝐹 𝑣𝑎𝑙𝑢𝑒𝑠

𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑠

…0 𝒚𝒏

Figure 3.5: Schema of the final FPGA implementation of the ACF. IThe
core has two local buffers to store portions of the signal and compute
more ACF values in parallel. In this way the length of the two input
streams is reduced by a factor equal to the size of local buffers. At each
iteration, the core outputs more than one value of the ACF.

SIMD architecture. Being able to use bigger local buffers should lead to
even higher performance improvements. Moreover, our implementation
can be easily scaled with respect to the available resources on the board,
by changing the local buffer size and its partitioning factor, which can
be easily done customizing C code given as input to Vivado HLS.

3.3 RIFFA Integration

After realizing the core, we need to perform the system integration phase
to realize an hardware architecture which allows us to use the realized
accelerator from the host system. The solution proposed in this section
is a first prototype of a system that can be used from a host device
to perform the computation. The features that have to be made avail-
able by the hardware architectures are: (i) the possibility to exchange
data via PCIe connection, (ii) the possibility to store data on DDR on
board, (iii) the possibility to easily manage the allocation into the DDR
memory, and (iv) the ability to control the hardware accelerator in the
design. Figure 3.6 illustrates the system we realized for satisfying the
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Figure 3.6: hardware Infrastructure to support communication with
host.

four points just mentioned.

The PCIe interface has been managed by using the RIFFA, an open
source solution from UCSD [24]. This solution, which is made available
as pure Verilog, has been packaged in a Xilinx core and extended with
the possibility to expose standard AXI4-Stream interfaces instead of the
proprietary interface exposed by the original RIFFA core. The part
of the design enclosing PCIe runs at 125MHz taking the clock from
the PCIe slot, while the remaining of the system runs at the reference
frequency generated by the MIG controller, which is the DDR controller
made available by Xilinx. This reference frequency can be configured
by the user, we used 200MHz in our design. In between these two clock
domains we placed FIFO components both because we need buffering
to store data coming from PCIe and because the Xilinx Data Stream
FIFO component can be configured to act as a clock domain crossing
component allowing the synchronization of the two asynchronous clocks
present in the design.

The design allows data movement over PCIe to and from the DDR
available on the board. Such data movement is possible thanks to a com-
ponent we wrote in HLS that reads/writes data from/to the AXI Stream
connections exposed by RIFFA and communicates with the MIG over
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an AXI Master connection. As the transmission is done via PCIe, it is
required to have packets of the appropriate size (we use 512 bits packets
of 16 floats, also to reduce transfer latencies). We create a hardware
design, by using Vivado HLS and Vivado, that can unpack data through
specific cores and allow the ACF core handles only 32 bits values, that
are then packed and sent back as 512 bits packets, on the PCIe. This
core, thanks to the AXI Master interface, is able to issue read and write
commands to the DDR and perform data movements. The core has also
an AXI Slave configuration port where a controller can pass parameters
such as the number of 512 bits words to move and the initial memory ad-
dress. Upon receiving the start command the cores perform a sequential
read or write from the provided initial memory address for the desired
number of words. The inputs and outputs of RIFFA communication
hardware components are 512 bits width since this datawidth allows to
reach a high memory bandwidth; we measured a peak bandwidth of 11.7
GB/s on our Xilinx VC707 board.

The last two requirements (i.e. the possibility to easily perform memory
management inside the FPGA and the possibility to control the hard-
ware core) are possible thanks to a Microblaze instantiated in the design.
The Microblaze communicates with the host system via PCIe, in fact,
one AXI Stream coming from the RIFFA core is directly connected to
the Microblaze stream interface. The Microblaze can then receive 128
bits instructions (in 4 32 bit words) from the host. Among these instruc-
tions, there is the request to allocate and deallocate a given number of
bytes on DDR on-board (MALLOC and FREE). Upon receiving the
command the Microblaze performs a malloc() or free() call and returns
the result of the operation to the host, which now is aware of which part
of the DDR is ready to be used for the computation. After allocating
memory regions inside the DDR the host can copy data to/from the de-
vice by sending the Microblaze the proper instruction (DDR_WRITE
or DDR_READ) and communicating the initial address and the number
of bytes. The Microblaze takes care of configuring the core we imple-
mented for moving data across PCIe to perform the requested operation.
At this point, the host can check when the transfer is done with another
instruction (CHECK_TRANSFER_DONE). Finally, the host can con-
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trol the ACF core by issuing the RUN_CORE command and passing
the needed parameters.

3.4 R and MATLAB Integration

The goal of building an interface between Higher Level Languages, such
as R and MATLAB, and an FPGA is to provide the user with algo-
rithms that can be called like any other function. These algorithms will
transparently make use of an FPGA implementation if certain criteria
are met. As an example, when working with data of small size it might
not be worth to use an FPGA, as the communication overheads would
nullify any gain achieved by using hardware acceleration; in this case,
the algorithm would fall back to a traditional CPU implementation. The
user would still have to configure its FPGA appropriately (in terms of
programming it with the right core), but no specific knowledge of the
board hardware and interfaces is required to use the algorithms from
Higher Level Languages.

RIFFA, on the software side, exposes two main functions: data send
and data receive, available via user libraries in C/C++, Python, MAT-
LAB and Java. To interface Higher Level Languages unsupported by
RIFFA, such as R, it requires an additional step. We have created a
host C++ function that can be called with the parameters needed to
compute the ACF and an output parameter where the values are stored
at the end of the call. When it is invoked, it sends the input data to the
connected FPGA through the RIFFA interface, then waits for results
and writes them into the output parameter. R is connected to the C++
host function by using the Rcpp package offered by CRAN [49]. Rcpp
allows to compile C/C++ code and build functions that can be called
from R as if they were regular R functions. As R uses its own data types
(e.g. arrays of floats use the class NumericVector) we have to convert
the passed variable to standard C++ arrays before passing them to the
FPGA, and vice-versa when returning the results to R. The conversion
is handled by the R’s C interface [78] which allows to cast the subtypes
of defined SEXP data type to default C++ data types or R data types.

MATLAB is supported by the RIFFA interface and it is possible to
use the functions to send and receive data directly from the Higher Level
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Language applications. As the FPGA implementation expects the data
with a certain structure (depending on the different hardware optimiza-
tions), it is not possible to send the signal directly, but a host function
that transforms the input signal is needed. To showcase the possibility
to connect the same host function written in C++ with more than one
Higher Level Language, we have decided to use the one produced for
the R application. To connect it to MATLAB we have used the Mex-
Files [69]. Similarly to the Rcpp package used by R, Mex-Files allows
to call an external C/C++ program from the MATLAB command line
as if it was a built-in function. Also in his case, it is necessary to con-
vert the Higher Level Language data types to default C++ data types.
MathWorks MEX Library API [70] allows to do the conversion easily.

We also exploit named pipes [79], a method used to send data be-
tween different processes (named pipes are created in Linux by using the
command mkfifo()). The named pipes behave like queues and allow the
host application written in C/C++ to run in background and communi-
cate through the queue system the by reading data sent independently
from R or MATLAB at runtime.

Finally, even if Boost-Python [80] allows to easily move between
Python and C++, as the previous examples, we decided to focus on
Python in the Chapter 4 where the recently release Xilinx PYNQ plat-
form is explored.
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They say when you meet the love of your life, time
stops, and that’s true. What they don’t tell you is
that when it starts again, it moves extra fast to catch
up.

Big Fish

This Chapter presents the hardware library of optimized version of some
NumPy functions. After a short overview, the details about the imple-
mentation are given in Section 4.2, Section 4.3, Section 4.4, Section 4.5.
Finally, some properties of our implementation are proposed in last sec-
tions of this chapter.

4.1 Overview

This Chapter is focused on extending the PYNQ Overlays offer by im-
plementing a hardware library that includes accelerated versions of the
core functions of NumPy. We have identified three target functions: the
Integer Sum, the Matrix Dot Product and the Correlate functions and
for each of them we have implemented both the hardware bitstream to
configure the Programmable Logic (PL) of the board and the software
APIs to execute and communicate directly from the Processing System
(PS). The main idea is to propose a methodology to fully integrate a
Python library with the PYNQ platform. In this way the users can ex-
ploit the FPGA device in a transparent way, by importing the hardware
library and using it instead of the software one. Similar to the ACF
case, the system selects at runtime which part of the application can
take advantage of the hardware implementation, for example by analyz-
ing the dimension of the input data of a specific function, and executed
it on FPGA. If the requirements no fit, the function is executed on the
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board processor by calling the original implementation from the soft-
ware library. With this approach, it is possible to obtain the shortest
execution time of the applications by targeting different computing units
within the heterogeneous system.

The reasons that led us to choose the Integer Sum, the Dot Product
for Integer Matrices and the Correlation functions have been:

• their widespread use within different Data Science fields;

• the possibility to compute independently more than one result
value, that can result in exploiting hardware parallelism;

• the capability to demonstrate the applicability of different tech-
niques in integrating functions with the PYNQ platform, such as
AXI4-Lite and AXI4-Stream interfaces.

For these purposes, we have used Vivado Design Suite tools by target-
ing the PYNQ-Z1 board (ZYNQ XC7Z020CLG400-1 part with PYNQ
Preset). For each function, the work has been divided into two macro
tasks: the Hardware implementation and optimization, and the Soft-
ware interface creation. Moreover, some of the Software interfaces have
been enriched by the optimization of the DMA software routine and De-
sign Reuse was taken into account when designing each overlay. Finally,
we have tested each implementation firstly by using Vivado SDK in a
standalone application, then by integrating the overlay in the PYNQ
platform mounted on the SD card of the PYNQ-Z1 board.

4.2 Integer Sum

The first function we have implemented is the Sum of two integer num-
bers. We have chosen to implement and describe this very simple func-
tion both to show the PYNQ overlay creation process, enriching the
examples available to the community, and to demonstrate the possibil-
ity to use AXI4-Lite control interfaces and the Python Memory-Mapped
I/O (MMIO) library to communicate from the PS to the PL part of the
board. By using Vivado HLS, we have created the sum_hw function
that exposes three AXI4-Lite ports: two for the operands and another
one to control the core and read the result of the operation.
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1 int sum_hw(int a, int b){
2 #pragma HLS INTERFACE s_axilite port=a
3 #pragma HLS INTERFACE s_axilite port=b
4 #pragma HLS INTERFACE s_axilite port=return
5
6 return a + b;
7 }

Figure 4.1 shows the block design of our hardware implementation of
the Integer Sum. By enabling one of the General Purpose AXI master
interface of the ZYNQ7 Processing System we can connect and directly
communicate through the AXI4-Lite with the sum_hw core. The hard-
ware specification produced by Vivado reports the memory addresses
needed to communicate with the AXI4-Lite interface.

1 ## Base address of sum_hw accelerator
2 XSUM_HW_BASE_ADDRESS = 0x43c00000
3 XSUM_HW_END_ADDRESS = 0x43cfffff
4 XSUM_HW_RANGE = XSUM_HW_END_ADDRESS -

XSUM_HW_BASE_ADDRESS
5
6 ## AXILiteS offsets
7 ## 0x00 : Control signals
8 ## bit 0 - ap_start (Read/Write/SC)
9 ## bit 1 - ap_done (Read/COR)
10 ## bit 2 - ap_idle (Read)
11 ## bit 3 - ap_ready (Read)
12 ## bit 7 - auto_restart (Read/Write)
13 ## others - reserved
14 ## 0x10 : Data signal of ap_return
15 ## bit 31~0 - ap_return [31:0] (Read)
16 ## 0x18 : Data signal of a
17 ## bit 31~0 - a[31:0] (Read/Write)
18 ## 0x20 : Data signal of b
19 ## bit 31~0 - b[31:0] (Read/Write)

The MMIO library of Python allows to directly read and write data
to a specific memory address. In this way it is possible to control the
execution of the core directly from the user application.
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Figure 4.1: Block Design of Integer Sum

1 from pynq import mmio
2 mmio = mmio(XSUM_HW_BASE_ADDRESS , XSUM_HW_RANGE)
3 [...]
4 # set the first addend
5 self.mmio.write(XSUM_HW_AXILITES_ADDR_A_DATA , a)
6 # set the second addend
7 self.mmio.write(XSUM_HW_AXILITES_ADDR_B_DATA , b)
8 # start the computation
9 reg_val = self.mmio.read(

XSUM_HW_AXILITES_ADDR_AP_CTRL) & 0x80 self.mmio.
write(XSUM_HW_AXILITES_ADDR_AP_CTRL , reg_val | 0
x01)

10 # wait done signal
11 while((self.mmio.read(XSUM_HW_AXILITES_ADDR_AP_CTRL

) >> 1) & 0x1):
12 pass
13 # read result
14 ret_val = self.mmio.read(

XSUM_HW_AXILITES_ADDR_AP_RETURN)

The proposed design of the Integer Sum underlines how it is possible
to use simple ports that use the AXI4-Lite light-weight interface to send
and receive parameters and control signals between Python applications
running on the PS and an core running on the PL. The same approach
can be used also in complex systems implementations to influence and
control the routines executed on the FPGA.
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4.3 Dot Product for Non-fixed Size Matrices

The second function we have implemented is the Matrix Dot Product.
The first design challenge is that we need to take care on how our core
accesses to the input data. In fact, the software implementation that
runs on PS has the possibility to access each point of the matrices from
the host DDR using any stride and type of access, as they are stored as
arrays in memory. On the other hands, to achieve low memory access
latencies from the PL, it is required to use the few available registers.
For this reason, it is not possible to store the entire input matrices by
only using registers and Block RAMs (BRAMs), unless input matrices
have a small number of points. Moreover, we wanted to build an imple-
mentation that does not have any fixed size constraint.

Thanks to the fact that to compute the (i, j) point of the output
matrix it is possible to access sequentially the points of the i-th row
of the first input matrix and of the j-th column of the second input
matrix, we have build an core that exploits two input streams of data to
compute each point of the output matrix. On the first input stream, we
sequentially send the points of the rows of the first input matrix. Each
row is repeated for the number of columns of the second input matrix
that are sent sequentially on the second input stream. After reading
all points of an entire row of the first input matrix and all points of an
entire column of the second input matrix (notice that for matrix dot
product those number of points are required to be equal), we can write
one point of the output matrix on an output stream. Nevertheless,
this kind of implementation cannot reach a speedup with respect to
software execution by using floating points. This is due to the fact
that NumPy uses a highly-optimized, carefully-tuned BLAS method for
floating points matrix multiplication, based on the ATLAS project [81].
However, we are able to reach a speedup with respect to the unoptimized
NumPy implementation of integer numbers matrix multiplication.

To create stream interfaces we have exploited the hls_stream library
and we have mapped the ports with AXI4-Stream interface. By using
hardware pipelining optimization, it is possible to mask the cost of ex-
pensive multiply-and-accumulate operations, and read from the input
streams at every clock cycle. Finally, we have let the system to auto-
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Figure 4.2: Block Design of Dot Product for Non-fixed Size Matrices

matically start the core and we control the execution by sending the
desired number of points.

1 #include <hls_stream.h>
2
3 struct data_struct{
4 int data;
5 bool last;
6 };
7
8 void matr_mul_stream(hls::stream <int > &x, hls::

stream <int > &y, hls::stream <data_struct > &out) {
9 #pragma HLS INTERFACE axis port=x
10 #pragma HLS INTERFACE axis port=y
11 #pragma HLS INTERFACE axis port=out
12 #pragma HLS INTERFACE ap_ctrl_none port=return
13
14 [...]
15 for (int i = 1; i < n_iterations *

n_points_per_iteration; i++) {
16 #pragma HLS PIPELINE II=1
17 accum = accum + x.read() * y.read();
18 [...]
19 }
20 }
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Figure 4.2 shows our block design of Dot Product for Non-fixed Size
Matrices. We have inserted two DMAs to send and receive data through
the AXI4-Stream interfaces. By enabling one of the AXI high perfor-
mance slave interface of the ZYNQ7 Processing System we can connect
and directly communicate with the DMAs.

Xilinx provides the users with a ready-to-use Python class that man-
ages the DMA operations directly from applications that run on the PS.
However, we have decided to reengineer the DMA interfaces to reduce
the time overhead introduced by the software APIs. We will describe
the proposed optimization in Section 4.6.

Exploiting AXI4-Stream interfaces is a commonly used techniques to
send huge amount of data from the host CPU to the connected FPGA.
The hardware design of the Dot Product for Non-fixed Size Matrices of
Integer Numbers is easily adaptable to different classes of algorithms.
In fact, we have used a very similar design, adapted with floating points
data streams, in the Correlation function implementation described be-
low.

4.4 Dot Product for Fixed Size Matrices

If we consider small matrices that can be stored by only using regis-
ters and BRAMs, it is possible to significantly reduce the number of
input points passed to the core, by avoiding duplication of the rows
and columns, and to better exploit the hardware levels of parallelism to
compute results.

We have fixed the matrix dimension up to size 84x84. We have
exploited partition of the local buffer to allow faster access and better
parallel execution. The choice of the local buffers dimension and of
the partitioning factor depends on the number of hardware resources
available. Finally, the pipeline optimization of the nested loops allows
the automatic unroll of the multiply-and-accumulate operations.
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1 #include <hls_stream.h>
2
3 #define DIM 84
4
5 struct data_struct{
6 float data;
7 bool last;
8 };
9
10 void mmult_84(hls::stream <float > &s_in , hls::stream

<data_struct > &s_out) {
11 #pragma HLS INTERFACE axis port=s_in
12 #pragma HLS INTERFACE axis port=s_out
13 #pragma HLS INTERFACE ap_ctrl_none port=return
14
15 float a[DIM][DIM];
16 float b[DIM][DIM];
17 float c[DIM][DIM];
18
19 int const FACTOR = DIM /4;
20 #pragma HLS array_partition variable=a block

factor=FACTOR dim=2
21 #pragma HLS array_partition variable=b block

factor=FACTOR dim=1
22 [...]
23 // matrix multiplication of a A*B matrix
24 L1:for (int ia = 0; ia < DIM; ++ia)
25 L2:for (int ib = 0; ib < DIM; ++ib)
26 {
27 #pragma HLS PIPELINE II=1
28 float sum = 0;
29 L3:for (int id = 0; id < DIM; ++id)
30 sum += a[ia][id] * b[id][ib];
31 c[ia][ib] = sum;
32 }
33 [...]
34 }

Figure 4.3 shows our hardware implementation block design of Dot
Product for Fixed Size Matrices. We have inserted one DMA that first
sends the entire input matrices on the input stream of the core, then,
after execution, receives back the entire output matrix on the output
stream of the core.

Also in this case, we have used the optimized DMA interface to send
and receive data between PS and PL part of the board. One peculiarity
is that the design of Dot Product for 84x84 Matrices can be used also
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Figure 4.3: Block Design of Dot Product for Fixed Size Matrices

with Matrices of smaller dimensions by padding them wit zeros before
the hardware execution.

The design of Dot Product for Fixed Size Matrices underlines how
it is possible to exploit the local hardware resources to implement op-
timization to reduce the execution time and the number of input data
to be passed to the core. This is a technique that can be used both
when the input data has a small size and when it is possible to divide
the input data into blocks to be saved in the local memory of the FPGA
and process them separately each from another. If the board provides
more hardware resources this design can be easily adapt and reuse to
obtain speedup also for matrices of greater dimension.

4.5 Correlation Function

The third function we have implemented is the Correlation function.
Like the ACF, It is a function commonly used in signal processing field
and in particular it is used to find similarities or repeating patterns in
signals. To obtain one value of the Correlation function it is necessary
to shift one of the signals of a given lag and then compute the covariance
between the shifted signal and the second one. If we repeat this operation
among an interval of lags equal to the size of the signals we obtain the
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Correlation function. Our implementation contains different types of
optimization, trying to combine the techniques exploited both in the
hardware implementation of the Dot Product for Non-fixed Size Matrices
and the Dot Product for Fixed Size Matrices. In particular the design
takes advantage of hardware parallelism both from the pipeline of the
operations on the input streams and by exploiting the presence of local
buffers to compute in parallel more than one output values.

1 #include <hls_stream.h>
2
3 struct data_struct{
4 float data;
5 bool last;
6 };
7
8 int const LOCAL_BUFFER_SIZE = 80;
9 int const PARTITION_FACTOR = 20;
10
11 void correlation(hls::stream <float > &x_in , hls::

stream <float > &y_lag_in , hls::stream <data_struct
> &correlation_out) {

12 #pragma HLS INTERFACE axis port=x_in
13 #pragma HLS INTERFACE axis port=y_lag_in
14 #pragma HLS INTERFACE axis port=correlation_out
15 #pragma HLS INTERFACE ap_ctrl_none port=return
16
17 [...]
18 // Use a local buffer of size LOCAL_BUFFER_SIZE

to calculate the autocorrelation points of
one iteration.

19 float local_correlation_buffer[
LOCAL_BUFFER_SIZE ];

20 #pragma HLS ARRAY_PARTITION variable=
local_correlation_buffer block factor=
PARTITION_FACTOR dim=1

21
22 // Use a shift register to store a certain

amount of points of the signal.
23 float shift[LOCAL_BUFFER_SIZE ];
24 #pragma HLS ARRAY_PARTITION variable=shift block

factor=PARTITION_FACTOR dim=1
25 [...]

44



4.5. Correlation Function

25 [...]
26 // ============= PARTIAL CORRELATION

COMPUTATION =============
27 one_iteration: for (int n = 0; n < num_points;

n++) {
28
29 // Compute a single iteration , i.e

LOCAL_BUFFER_SIZE values of the
correlation.

30 #pragma HLS PIPELINE II=1
31 x_i = x_in.read();
32
33 // Shift by 1, and acquire a new point from

the signal.
34 shift_2: for (int k = LOCAL_BUFFER_SIZE -

1; k > 0; --k) {
35 #pragma HLS UNROLL
36 shift[k] = shift[k - 1];
37 }
38 shift [0] = y_lag_in.read();
39
40 // ============= PARTIAL SUMS =============
41 // Compute the partial sums.
42 partial_sums: for (int j = 0; j <

LOCAL_BUFFER_SIZE; j++) {
43 #pragma HLS UNROLL
44 local_correlation_buffer[j] += x_i *

shift[LAGS_PER_ITERATION - 1 - j];
45 }
46 }
47 [...]
48 }

The design of the Correlation Function is an evolution of the ACF
hardware implementation presented in Chapter 3. By using a local buffer
that behaves as a shift register, it is possible to compute a number of
values of the correlation function in parallel equal to the size of the local
buffer; their partial values are stored in the second local buffer, and
are written on the output stream only when every points of the signals
has been read from the streams. The input streams can be considered
divided into blocks: each block has a size equal to the size of the signals.
The blocks in the first input stream contains the first signal repeated for
an interval of lags and the blocks in the second input stream contains
the second signal shifted by the lag contained in the same interval. A
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Figure 4.4: Block Design of Correlation Function

padding of zeros, of length equal to the shift, is put in front of each block
of the second stream, so that it is possible to read together values from
the first and second stream at each clock cycle.

Once again, by employing hardware pipelining and loop unrolling, we
were able to mask the latency of multiply-and-accumulate operations.
However, as many operations are done in parallel, the execution time of
the algorithm is proportional to the input streams size: the local buffers
reduce the stream size by a factor equal to local buffers size, which in
turn reduces the complexity of the algorithm by the same factor. Being
able to use bigger local buffers should lead to even higher performance
improvements. Moreover, our implementation can be easily scaled with
respect to the available resources on the board, by changing the local
buffer size and its partitioning factor.

Figure 4.4 shows the block design of Correlation Function. We have
inserted two DMAs to send and receive data through the AXI4-Stream
interfaces. By enabling one of the AXI high performance slave interface
of the ZYNQ7 Processing System we can connect and directly commu-
nicate with the DMAs.
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Also in this case, we have used the optimized DMA interface to send
and receive data between PS and PL part of the board. The software
function also pads the signal before starting hardware execution. This
design shows how it is possible to exploit the local hardware resources
to implement optimization to reduce the execution time and the number
of input data to be passed to the core.

4.6 DMA Optimization

To communicate and control DMAs from the PS, Xilinx provides the
users with a ready-to-use Python class that manages the DMA opera-
tions. The reasons that led us to decide to reengineer the DMA interfaces
are the following:

1. The Python DMA class, provided by Xilinx, is written using a
technique called CFFI. CFFI introduces the possibility to call C
functions, included in properly compiled C libraries, directly from
Python. Although CFFI is considered a good method to improve
the Python application performance, in our context, where we need
to exclude as much as possible interfacing overheads, another more
light and performing solution had to be found.

2. The Xilinx DMA module is intended for a general purpose use
and for a potential non-expert audience. For this reason, a series
of safety control has been introduced in the code. We can avoid
allocating time for some of them since we are in charge of writing
the interfaces and the custom DMA module that we are going to
provide is not intended for non-expert developers.

3. We needed to approach some of the DMA’s routines in other ways.
For instance, in the Xilinx DMA class, the initialization of the
DMA was coupled with the creation of a local buffer in the board
DRAM, while we needed to be able to associate a buffer with a
DMA, independently from its initialization.

We chose the Python/C APIs to rewrite our custom DMA mod-
ule because of their flexibility and expected performance. Python/C
API extension module is completely written in C and, thanks to the
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Figure 4.5: Comparison of methods to improve Python performance

Python.h library, a dynamic library can be compiled and then imported
into a Python application. The Python object included in the Python.h
library assures a fully compatible interaction between the C declarations
and the Python code while reducing at the minimum all the overheads
between Python and C [82]. Other solutions, like Cython, could have
been exploited for our purpose. Although, how it is shown in Figure 4.5,
none of them were as straightforward as Python/C APIs and the ex-
pected effort needed to get comparable performance was much higher.

In order to extract the maximum speedup possible from the data
transmission phase of our applications, we have written custom functions
to handle the specific data transmission patterns of each of the functions
we accelerated. In this way, the pointers both to the buffers that contain
the input data and to the one allocated for the operation result are passed
to the specific data transmission function and all the rest of the routine
is handled by our C compiled DMA module. In particular, we used some
of the XAxi interfaces functions that we also used in the Vivado SDK
environment to test our cores.

Thanks to this work, we have obtained an important speedup in
terms of the execution time of our hardware accelerated functions ran
by the ARM processor mounted on the board. Moreover, we managed
to obtain much more flexibility to handle the local buffers in the lightest
way.
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4.7 PYNQ Integration

Thanks to the PYNQ overlays model, bitstreams can be loaded dynam-
ically by the users directly from their applications and used to configure
the fpga. Moreover, thanks to the Python interface included in the over-
lay, the user will be able to use the hardware accelerated functions just
by calling them like functions of a software library. In particular, we
have called the produced hardware library, that contains all our opti-
mized function, "numpynq".

From the user point of view, only the Python import will change. If
NumPy is imported as follows with Python:

1 import numpy as np
2 ...
3 c = np.dot(a,b)
4 ...

the numpynq overlay would be loaded as follows:

1 import numpynq as np
2 ...
3 c = np.dot(a,b)
4 ...

The import of the numPYNQ library will allow the user to use the hard-
ware accelerated functions, as long as they are included in the package,
in a transparent way and the overlay will program the board with the
bitstream needed to execute the task required by the user. If there is
not a hardware implementation of the function called by the user, the
numPYNQ library automatically delegates the call to the NumPy soft-
ware implementation of that function.
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L’uomo é un essere fondamentalmente temporale.

Steins;Gate

In this chapter, we show the results that have been obtained, in terms of
execution time speedup. These results represent the comparison between
our hardware accelerated functions executed by exploiting an FPGA
device and the corresponding software implementation of the algorithm
executed by the CPU. Finally, Section 5.2.3 describes some software
routine techniques to optimize also the integration with Higher Level
Languages.

5.1 Desktop System Results

Since the implementation of ACF require PCIe communication compo-
nents we decided to analyze at first the resource usage of the devised
hardware architecture in Section 5.1.1. Then we compare the execution
time of the proposed solution with the original R implementation in Sec-
tion 5.1.2. Our solution has been implemented on a Xilinx VC707 board
mounting a Xilinx Virtex7 xc7v456ff157-1 [77] FPGA. The software so-
lution has been tested on an Intel i7-4710HQ [83].

5.1.1 Resource Utilization

Table 5.1 reports a utilization breakdown of the different components in
the hardware architecture we designed. Looking at numbers we can see
that the ACF core is the one using the most of the resources, but still the
remaining of the design, which is used only for handling communication
with the host, still occupies a relevant amount of resources. By the
synthesis reports, we noticed that the hardware infrastructure, without
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Table 5.1: Resource utilization breakdown among different components
of the proposed architecture.

Component LUTs FFs BRAMs 18K DSPs
MIG 13568 15035 3 0
RIFFA 50409 65888 387 0

Microblaze 1749 2103 12 0
FIFOs 860 1523 229 0

Datawidth Converters 401 1564 0 0
Interconnects 8577 10463 160 0

DMAs 2395 3137 15 0
PCIe - DDR 1557 3707 0 0

ACF 83678 113458 0 503

the ACF core, uses: 26% of LUTs, 33% of FFs, and 39% of BRAMs.
Most of the resource usage of the infrastructure is caused by RIFFA and
the FIFOs used to buffer the data exchanged over PCIe. At the moment
this is a limiting factor of our solution since it constrains a number of
resources that can be used by the computational core. These numbers
are still similar with a number of resources that are used by similar
solutions, such as SDAccel [67, 68].

5.1.2 Performance

For evaluating the performance of our solution, we compared the re-
sults obtained implementing the ACF algorithm on the Xilinx VC707
board and the corresponding results obtained via native R library. Note
that for signals with a low number of points the latency of transfer data
through the PCIe can represent a bottleneck, so it results more conve-
nient executing the computation on the CPU. To avoid these marginal
cases, we analyzed signals with a number of points greater or equal to
50K, which is also a reasonable number in the context of data science
and signal analysis [84]. The tests were performed using univariate sig-
nals with increasing number of points, ranging from 50K to 1M . The
maximum lag considered, which coincides with the number of points of
the ACF that were computed, is half of the number of points of the
signal. From the results in Figure 5.1 it can be immediately seen that
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Figure 5.1: Execution time of ACF tests for univariate signal with in-
creasing number of points, on a Virtex-7 and on a CPU. The FPGA
massively outperforms the CPU as the signal size becomes bigger and
bigger.

the FPGA massively outperforms the CPU as the signal size becomes
bigger and bigger. To precisely quantify the improvements of our imple-
mentation over the default R one, we can compute the speedup, defined
as:

Speedup =
Timecpu
Timefpga

In Figure 5.2 it can be seen how the speedup grows very quickly
up to about 300K points, then it slows down. This can be explained
considering the overheads caused by the data transfer to the core, that
becomes negligible for large signals. Moreover, the ability to compute
more lags in parallel can only reduce the complexity by a constant factor:
this can be seen on large signals, for which the speedup value is almost
constant with respect to the size of the input.
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Figure 5.2: Speedup percentage of a Virtex-7 over a CPU for a univariate
signal with increasing number of points. The speedup grows very quickly
up to about 300K points, then it slows down due to the overheads caused
by the data transfer and the ability to compute a fixed number of ACF
values in parallel.

It should be noted that the speedup curve does not reach a stationary
value in our analysis. As we know that the complexity of the considered
algorithms is quadratic with respect to the number of points in the
input, we performed a polynomial regression (of order 2) over the CPU
and FPGA execution times and computed the speedup of the predicted
execution times. In Figure 5.3 it can be seen that the speedup stops
increasing with signals of more than 5 million points, with a theoretical
speedup value of 700%. We also included the real speedup values for
signals with 2M and 3M points, for comparison.
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Figure 5.3: Speedup prediction of a Virtex-7 over a CPU for univariate
signal with increasing number of points. The speedup curve reaches
a stationary value with signals of more than 5 million points, with a
theoretical speedup value of 700%.

5.2 Embedded System Results

In this section we compare the execution time of the proposed solution
for the PYNQ platform. The results reported are the comparison be-
tween the execution times of our hardware accelerated functions and the
corresponding NumPy function executed by the dual-core ARM proces-
sor mounted on the board PYNQ-Z1. When the optimized version of
the algorithm is called by the application, the FPGA is automatically
configured with the desired implementation and the computation is of-
floaded from the processing system of the board to the programmable
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logic.

5.2.1 Matrix Dot Product

Both the custom 84x84 dot product and the general one have been tested
in two different situations. A test in which the system is highly loaded
while another one with the system that is in an idle condition at the
moment the test is started. Basically, in the first test type, we launched
the execution of dot products of bigger and bigger matrices in which one
test suddenly follows the previous one. With the second test type, we
let the system go back to an idle condition and then restart the test on
matrices of the same dimensions.

For what concerns the custom 84x84 dot product, the test in highly
loaded conditions has provided a speedup of 1.09x, while the peak per-
formance of the test in light loaded conditions reached a speedup of
1.35x.

We conducted the two test cases also with the Dot Product for Non-
fixed Size Matrices of Integer Numbers. Figure 5.4 shows the tests,
executed both for software and hardware implementations of the algo-
rithm, within a loaded system situation in which bigger and bigger dot
products have been computed one after the other. For small matrices the
CPU has better performance thanks to the data transfer time required
by the FPGA implementation. Figure 5.5 reports the speedup curve,
that increases with the dimensions of the input matrices. We observed
the speedup break even with a dot product between 635x635 matrices .

We conducted the test also in light loaded conditions with a dot
product between two 1024*1024 matrices reaching a speedup of 3.95x.

5.2.1.1 Runtime Adaptivity

One of the key result of the Matrix Dot Product implementation, and
in general of our work, is the capability of the system to choose the best
function implementation based on the input data type and dimension.
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Figure 5.4: Dot Product for Non-fixed Size Matrices of Integer execu-
tion time with increasing number of matrices dimensions, on CPU and
FPGA of the PYNQ-Z1 board. For small matrices the CPU has better
performance thanks to the data transfer time required by the FPGA
implementation.

Once a matrix dot product is requested at runtime, our solution
decides if the product should be executed by:

• the Dot Product for fixed Size Matrices hardware design made for
the matrices with dimensions smaller or equal to 84x84

• the Dot Product for Non-fixed Size Matrices hardware design able
to deal with matrices of every dimensions, in particular with size
greater than 635x635 (break-even point)

• the NumPy software solution for the other cases

5.2.2 Correlation

We obtained even more interesting results with the test set executed on
the Correlation Function. Figure 5.6 shows the execution time of Corre-

57



5. Experimental Results

0.0

0.4

0.8

1.2

1.6

50
0

60
0

70
0

80
0

Matrix Dimensions M in
dot([M,M],[M,M])

S
pe

ed
up

 [x
]

Dot Product for Non−Fixed Size Matrices of Integer
 speedup of FPGA over GPU

Figure 5.5: Dot Product for Non-fixed Size Matrices of Integer speedup
with increasing matrices dimension. We observed the speedup break
even with a dot product between 635x635 matrices. This result can be
taken into consideration at runtime to select the best implementation to
be performed.

lation Function with signals of increasing number of points computed on
FPGA and CPU of the PYNQ-Z1 board, while in Figure 5.7 it can be
noticed how the speedup has a logarithmic growth related to the num-
ber of points contained in the analyzed signals. As it is shown in the
graph, the speedup threshold is near 10x. This is due to the fact that
the Correlation hardware design implements a series of local buffers in
the FPGA memory that allows several optimization in terms of array
partitioning and loop unrolling. When the size of the signals becomes
very large with respect to the size of the local buffers, no more speedup
is expected.
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Figure 5.6: Execution time of Correlation Function with signals of in-
creasing number of points computed on FPGA and CPU of the PYNQ-
Z1 board.

5.2.3 DMA Optimization

Without an optimized DMA, we experienced extremely slow data trans-
mission that would not have allowed a comparison with the software
execution time. We defined the dot product between two 1024x1024
matrices, with our general dot product design, as the test case to evalu-
ate the DMA interface performance. The latest results of our test case
resulted in an execution time of 55" with the DMA class provided by
Xilinx, while an execution time of 25" with our optimized DMA module.
This corresponds to a speedup of more than 2x.
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Conclusions 6

How did it get so late so soon?

Dr. Seuss

This Chapter shows the conclusions derived from our work presented
so far. Section 6.1 discusses the contributions of this thesis, while Sec-
tion 6.2 analyzes the limitations of the proposed work. Finally, Sec-
tion 6.3 presents some possible future works and enhancements starting
from this thesis.

6.1 Contributions

In this work, we firstly presented some techniques to implement FPGA-
based optimized version of algorithms that are widely used in the con-
text of data science and scientific calculus. Then, we illustrated how it
is possible to take advantage of FPGA-based implementations directly
and transparently from Higher Level Languages. To do so, we explored
different tools to create hardware libraries both for Desktop and Em-
bedded systems. The main accelerated functions are the software im-
plementations of the ACF present in the default libraries of R language
and different implementations of the Matrices Dot Product algorithm
and the Correlation Function function from the NumPy Python library.

In particular the main contributions, in the same order as they ap-
peared in the thesis, can be synthesized as follow:

• we have presented a technique to analyze and optimize the ACF
algorithm and the design of an FPGA-based hardware implemen-
tation to improve its performance, then the methods to integrate
the core at System on Chip (SoC) level to allow communication
with a Desktop system running Higher Level Languages and the
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steps needed to exploit the hardware function transparently from
such Languages;

• we have adopted some of the presented techniques to also obtain
hardware optimized implementations of Matrix Dot Product al-
gorithm and of the Correlation function from the NumPy library
of Python, then we have presented the integration of such func-
tions with the PYNQ-Z1 Embedded system, to offload part of the
computation from the CPU to the FPGA. In particular, our work
describes how to create Python interfaces to communicate through
AXI4-Lite and AXI4-Stream with the custom hardware function
configured on the PL;

• we have made the whole exploitation process transparent to the
end users so that they can take advantage of the high computa-
tional power provided by hardware acceleration without approach-
ing the whole FPGA programming learning path. The system au-
tomatically identifies the parts of the user application that can be
executed on the FPGA and reduce the overall execution time;

• finally, we have built a software optimized implementation of the
Python interfaces that improve the official DMA Class provided
by Xilinx within the PYNQ project.

6.2 Limits of the Present Work

The proposed work could be improved with respect to different limita-
tions. First of all, proposed hardware implementations can be refined
to support boards with more hardware resources available, for example
by leveraging core duplication on FPGA. This could lead to a higher
level of parallelism and to better performance, by hypothesizing also an
increase of the transfer bandwidth. Secondly, the functions offered to
the user are limited to allow the proposed prototypes to be appealing.
By using the techniques illustrated in this thesis, it is possible to ex-
tend the number of optimized algorithms available to the end user, that
can exploit them directly in Higher Level Languages. Similarly, it is
possible to add more interfaces to Desktop systems to support new pro-
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gramming languages that communicate with the host application. Even
with Embedded systems, it is possible to consider the idea of explor-
ing new Higher Level Languages, but this is a more advanced passage
that also requires high-level knowledge of the operating system and of
the entire architecture of the embedded device. Finally, the illustrated
techniques could be generalized and automated to create a framework
available for hardware design developers. In this way, they could ex-
ploit the interfaces proposed in our work to integrate their core with
the supported Higher Level Languages and provide the end user with a
ready-to-be-used product.

6.3 Future Work

Future work will focus on multiple aspects to face the described lim-
itation of present work. One will be the support of a wider range of
algorithms and the development of the corresponding accelerators and
the corresponding interfaces for Higher Level Languages. We will also
broaden more support of Hgher Level Languages within the different sys-
tems, for instance, a Python interface for Desktop systems. For this pur-
pose, Boost-Python [80] is available to perform the operation to convert
datatypes and communicate between Python and the C host application.
In doing the extensions in Desktop systems, we might also need to fur-
ther abstract and revisit the interface with the hardwaredevice to be able
to control different hardwarecores via the same interface. Furthermore,
we also want to investigate two aspects on the hardwareside, the first
one is the support of other PCIe interfaces as the one directly provided
by Xilinx in the new versions of Vivado tools or by exploiting SDAccel.
Finally, we need to allow the hardwareto perform partial reconfiguration
of the core performing the computation to allow the possibility to run
different algorithms on the FPGA at the same time.

We also aim to continue to optimize the functions implemented for
the Embedded system. First of all, there is a series of optimization that
can be included in the hardware library in order to reduce as much as
possible the wind up phase that now is needed to set up the FPGA. Then,
we think that working on the design of the DMA class, we could reach
improvements for what concerns the performance of the data transfer.
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To conclude, we would like to adapt our solution, developed on spe-
cific boards, to make it work with the much more powerful Xilinx Zynq
UltraScale+ [85] or similar boards. These devices have is equipped with
a Zynq architecture [72], similar to the one presents in the PYNQ-Z1
board, and for this reason can support the PYNQ platform. Our goal
would be to revise the hardware designs, in order to exploit the addi-
tional programmable logic that these devices provide, and to let the user
interface the hardware accelerated functions in the same transparent way
as we did with our first implementation, thanks to the PYNQ Overlays
concept.
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