
FPGA-based Embedded System Implementation of
Audio Signal Alignment

Luca Stornaiuolo, Massimo Perini, Marco D. Santambrogio, Donatella Sciuto
Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria (DEIB), Milan, Italy

{luca.stornaiuolo, marco.santambrogio, donatella.sciuto}@polimi.it
massimo.perini@mail.polimi.it

Abstract—FPGAs are considered a valuable solution for em-
bedded system applications thanks to their performance, energy
efficiency and capability to face system failures. However, the
number of available applications is limited due to the learning
curve needed to customize FPGA-based accelerators. As proof
of this, Xilinx recently released PYNQ, a platform for Zynq SoC
that relies on Python and overlays to ease the integration of
functionalities of the programmable logic into applications.

In this work, we build upon this framework to implement
an optimized embedded design for audio alignment and we
integrated it in the Python applications workflow. In particular,
we provide a custom accelerator designed for PYNQ and the
software interface to transparently exploit the programmable
logic from the Python code runs on the embedded CPU. We then
compare the executions on two different devices: the PYNQ-Z1
and the Raspberry Pi 3. Our FPGA accelerated implementation
is able to reach a speedup of 12.4x with respect to the PYNQ-Z1,
when only the CPU is used, and a speedup of 5.5x with respect
to the Raspberry Pi 3 version.

Index Terms—Zynq, SoC, PYNQ, Python, NumPy, FPGA,
Audio Alignment

I. INTRODUCTION

FPGAs are experiencing an exceptionally favorable mo-
ment, as demonstrated by Intel’s acquisition of Altera, Mi-
crosoft’s Catapult project [1], and Amazon’s integration of
FPGAs as accelerators in their cloud offerings1. The slowing
of Moore’s law, and the rise of fields as artificial intelligence
and computational biology, are indeed shifting the interest of
industry and academia towards less conventional computing
architectures, that can meet the ever increasing demand for
performance and energy efficiency, an exemplary choice being
precisely FPGAs. For this reason, FPGAs market is expected
to reach $12.1 Billion by 20242, showing a Compound Annual
Growth Rate (CAGR) of 7.3% starting from 2016.

However, no matter how much FPGA technology has ma-
tured, the usability barrier is still preventing the mainstream
adoption from happening. As a matter of fact, integrating
FPGA-based hardware accelerators into applications today is
still a cumbersome experience. The current implementation
flow requires specific skills and knowledge of low-level tools
that are simply out of reach for the largest part of software
developers, and albeit High Level Synthesis (HLS) does mit-
igate some difficulties, by at least offering the possibility to

1https://aws.amazon.com/it/ec2/instance-types/f1
2https://www.variantmarketresearch.com/report-categories/semiconductor-

electronics/field-programmable-gate-array-market

use higher level languages, today’s available tools still require
to go through the same development process.

In an effort to address the usability challenge, Xilinx re-
cently released the PYNQ (PYthon productivity for zyNQ)
platform [2]. Zynq architecture integrates a multi-core ARM
processor with an FPGA into a single chip. With Python
[3], developers can build complex applications very quickly,
by leveraging its high level of abstraction and the plethora
of available libraries. PYNQ then offers the possibility to
exploit the programmable logic within the Python environment
by means of overlays, or hardware libraries. These overlays
are essentially FPGA designs whose functionalities are made
available to the user as Python Application Programming In-
terface (API). Developers can then simply import and use these
libraries, exploiting the programmable logic while staying at
the pure-software level.

Within this paper, we present our work on accelerating
Audio Signal Alignment for a PYNQ-based embedded system.
The Audio Signal Alignment application we target is mainly
based on two scientific functions: the Cross-Correlation and
the Fast Fourier Transform. Since we deal with the Python
environment, we started from the NumPy (i.e. the most used
Python library for scientific calculus3) implementations of
these two functions and we accelerate them by offloading
part of the computation from the processing system to the
programmable logic available on Zynq SoCs. We exploited
the PYNQ overlay concept to build a hardware library that
can be integrated into the Xilinx platform and can be used
transparently by the end users. We have done this, so that
software developers and data scientists can exploit the accel-
erated version of the functions by simply changing the import
of NumPy in their Data Science applications, with everything
handled automatically from the system.

We have chosen Audio Signal Alignment also taking into
consideration the scenario where part of the scientific compu-
tation and signal preprocessing is performed on an embedded
device before sending the data to the cloud servers. This
reflects the Fog Computing paradigm [4], which, nowadays,
is increasingly gaining ground. For this reason, we have
compared the results on the PYNQ-Z1 board with the same
application performed on a Raspberry Pi device, one of the
most widespread solutions for embedded systems.

3http://www.numpy.org



Figure 1. These two figures describe the Audio Signal Alignment application. The left image shows two noisy audio of the same conference recorded with
different microphones in different places. Common recordings is in the range [150000:650000] of the first track and in the range [0:500000] of the second
track. The right image shows the Cross Correlation function result. The peak of the Cross Correlation function is in the 849946th sample. The middle point
is in the 699999th sample so we need to remove 149947 samples from the first signal in order to have them synchronized (with an error of 53 samples).

II. BACKGROUND AND MOTIVATION

In this section we provide a description of the Audio Signal
Alignment application, we briefly present the PYNQ platform
with the explanation of the rationale behind overlays, then we
show an overview about the embedded devices employed in
this project before ending the section with the related work
found in the literature.

A. Audio Signal Alignment

Signal alignment is a real-world problem suitable for em-
bedded system devices and in which our approach can be
adopted. In these kinds of problems, we have to align two
or more misaligned noise-corrupted signals in which the same
event has been recorded. These kinds of issues can occur in
many areas including biomedical and audio field and therefore
we studied how hardware acceleration can be applied to the
latter case. In the audio field, we often have multiple signals of
the same event recorded by different sources. There are many
reasons why this approach is adopted, such as the fact of being
able to generate a less noisy signal. Since it is not always
possible to have recordings synchronized together, an embed-
ded system able to synchronize audio tracks and remove the
portion of the signal not related to the event we are interested
in can be useful. An example can be founded in the scenario of
multiple audio signals of a recorded conference. We may have
many reasons to process them, e.g. speech-recognition, but
the audio sources could be recorded by multiple microphones
with no common starting or ending points. These signals could
also have multiple different sources of noise (e.g. crosstalk).
In this case, we may want an embedded device in charge of
sending to the server only the common parts of the different
signals adopting a Fog Computing paradigm, i.e. avoid sending
useless data that can be removed during pre-processing.

A similar approach can also be adapted to be able to
synchronize multiple video streams using their audio channels.

In this case, the saved data transfer will be even higher. The
software implementation of the audio alignment application is
inspired by [5]. Specifically, given two signals, this algorithm
requires to compute the Cross-Correlation function of their
samples and find the value x in which the Cross-Correlation
function is maximized. Defining N = len( f irst_signal) and
M = len(second_signal), x− (N+M−1)

2 is the number of sam-
ples that we need to remove from the first signal in order to
align it with the second one. In the case of negative value,
these samples need to be removed from the second signal.

In order to improve the performances of the algorithm, we
furthermore extracted a sequence of MFCC feature vectors
from both signals using [6]. This step requires applying the
Fast Fourier Transform of the signals. We then computed the
Cross-Correlation function of the feature matrices along the
time axis and calculated the average of the points in which the
Cross-Correlation function is maximized. Finally, the output
of the cross-correlated signals is averaged with the output of
the cross-correlated feature matrices to reduce the percentage
error of alignment. Figure 1 shows the result of applying Cross
Correlation function to two audio signals recorded by different
sources.

B. The PYNQ Platform

PYNQ is a Xilinx platform that targets Zynq SoCs, and
its objective is to allow developers to write applications that
exploit the programmable logic without having to use the
low-level design tools needed to design programmable logic
circuits. PYNQ relies on Python as the productivity language
of choice, a decision driven by its incredible popularity [3],
and the fact that Python raises the level of programming
abstraction which results in more concise, expressive code, that
is in turn less prone to errors and faster to write. Moreover,
PYNQ uses CPython, the default and most used Python
interpreter, that is written in C and comes with different



Figure 2. Schematic block diagram of the Zynq SoC [2] with its commu-
nication interfaces. The connected peripherals can be managed directly from
Python exploiting the PYNQ base overlay for PYNQ-Z1.

tools and methodologies to bind functionalities from foreign
languages into Python. This means that developers do not
have to compromise performance for productivity, as one can
always wrap high-performance code written in a lower-level
language into Python. This has been proven to be beneficial
in the case of PYNQ [7], but it is, in general, an important
feature of CPython, already exploited by the community to
build sophisticated libraries, such as NumPy itself, that expose
a simple Python interface but relies on highly optimized
code written in another language. Also, PYNQ proposes the
concept of overlays, or hardware libraries, as a mean to utilize
the programmable logic. These overlays resemble classical
software libraries but expose functionalities of the FPGA.
Programmable logic circuits are wrapped as Python modules,
that can be imported into the application and allow developers
to use hardware functions via a Python API. However, creating
an overlay still requires expertise in designing programmable
logic circuits. The key aspect is that overlays are conceived
to be designed once, but reused multiple times. In this sense,
Xilinx’s intent is to create an environment where a few experts
build overlays to offer a greater user-base the ability to exploit
programmable logic while staying at the software level.

C. Embedded Systems Devices

Embedded systems are electronic digital devices specialized
in particular functions used as components into larger systems.
They monitor and control the system through special hardware
devices cheaper and faster than general purpose solutions [8].
The reason why this technology became widespread, not only
in large industries but also in everyday life, is related to the IoT
(Internet of Things) concept. The IoT paradigm is based on
different types of physical devices that are connected together
through the network, to allow real-time data transmission and
items interaction [9]. What follows is a description of the
two platforms we used during our tests and they represent
two of the most used devices to develop embedded systems.
Moreover, these platforms are used as gateways in already
mentioned Fog Computing systems, thanks to their versatility
and power. The aim is to decentralize computing infrastructure

by extending Cloud Computing and services to the edge of the
network [10].

1) PYNQ-Z1: The device mainly used in our work is
Xilinx PYNQ-Z14, that combines Microprocessor and
Programmable Logic into a Zynq SoC. Figure 2 shows
the Zynq SoC architecture and the available interfaces
that can be used through the PYNQ platform. The
processor is Dual ARM® Cortex™-A9 MPCore™ with
CoreSight™ @ 650MHz with 32 KB Instruction, 32 KB
Data per processor L1 Cache, 512 KB unified L2 Cache
and 256 KB On-Chip Memory. The available logic is
85K logic cells (13300 logic slices, each with four 6-
input LUTs and 8 flip-flops), 630 KB of fast block
RAM, four clock management tiles, each with a phase-
locked loop (PLL), 220 DSP slices, internal clock speeds
exceeding 450MHz. The programmable logic has a logic
blocks structure (CLB) surrounded by I/O blocks (IOB)
that can be used arbitrarily.

2) Raspberry Pi 3: The second device we used is
Raspberry Pi 3 model B5, Broadcom BCM2837 64bit
ARMv8 quad-core Cortex A53 processor @ 1.2GHz, 1
Gb RAM, and it belongs to Microprocessor category.

To make a comparison, Raspberry Pi 3 is a valid solution
thanks to its reasonable cost, computational power, and energy
consumption [11], and its widespread is also thanks to the ease
of use. However, PYNQ-Z1 is suitable for the deployment of
embedded systems that require high performance to process
data. In fact, the programmable logic allows creating custom
circuits to accelerate software processes and it can be repro-
grammed to be flexible with different use cases (in contrast to
Application-Specific Integrated Circuits).

D. Related Work
Kammerl et al. [12] presented two graph-based approaches

able to synchronize several audio signals. Features like Spec-
tral Flatness or Zero-crossing Rate are extracted from the
audio sources. Then, a pairwise cross-correlation of features
is computed to generate the graph. Algorithms like Minimum
Spanning Tree or Belief Propagation are then used to compute
the final offset of each signal.

Ellis et al. [13] developed a system able to compute music
similarity not only adopting feature statistics, but also comput-
ing the relative position of those features in tempo-normalized
time. It works extracting music features averaged within each
beat: this allows to construct the beat-synchronous feature rep-
resentation. The cross-correlation peak value is the similarity
measure between two songs. Shrestha et al. [14] presented
two methods able to synchronize videos coming from different
sources. This is performed with audio synchronization. One of
the methods extracts features from the audio. Then, using a
classifier, probabilities of several classes are computed every
δ t. Each audio class is then compared with the same class
of other recordings using cross-correlation. The peak in the
correlation coefficient identifies the synchronization point.

4http://www.pynq.io/board.html
5https://www.raspberrypi.org/products/raspberry-pi-3-model-b/



III. APPROACH

In this section, we introduce how our solution works and
how it can be used to take advantage of the Programmable
Logic of Zynq SoCs to accelerate the Audio Signal Alignment
application.

A. Transparent Hardware Acceleration

As NumPy is the most used library for Python Data Science
Application, providing hardware acceleration for it represents
a valuable contribution to the PYNQ project. We have there-
fore built a NumPy library designed for the PYNQ platform,
to enable transparent hardware acceleration for its Fast Fourier
Transform and Cross-Correlation function. Transparency is
granted by the fact that using the proposed library boils down
to simply changing the name in the import statement, as shown
in the following snippet of code. This reduces a lot the effort
of final users to take advantage of the Heterogeneous System
Architecture (HSA) selected.

# Using original NumPy
import numpy as np
...
z = np.correlate(x, y, 'full')

# Using NumPy with hardware acceleration
import numpynq as np
...
z = np.correlate(x, y, 'full')

This is possible thanks to an override-like process of the
original NumPy functions we used within the numpynq mod-
ule. In this way, if a NumPy function is not accelerated in
hardware or if the required context is not satisfied, the original
software version is called. In the following section, we better
explain this concept and its advantages.

B. Runtime Code Scheduling

There are circumstances in which offloading the compu-
tation to the FPGA does not bring any benefits, and might
actually hurt performance. For this reason, we implement
a predictive code scheduling mechanism, with an approach
similar to what has been done for GPUs [15]. In particular, for
each Fast Fourier Transform or Cross Correlation function call
(for which we provide a hardware accelerator), we implement
a scheduling policy based on performance history and some
input properties or physical constraints. Since our implementa-
tion wraps the original NumPy, we then automatically delegate
to it non-accelerated calls. We mostly consider the input size
and the input data type to predict the execution time of the
different implementations. We collect performance history data
for different inputs and build a model of performance that we
then use to discriminate what implementation to choose, given
the context.

We depict our code scheduling mechanism in Algorithm
1. In this algorithm, we identify context() as the action of
extracting contextual information from the specific call, as
the input size and the input data type, while hw_accelerator()

Algorithm 1 Performance History Scheduling
ctx← context(numpy_call)
hw_impl← hw_accelerator(numpy_call)
chosen_impl← sw_numpy
if history(hw_impl,ctx)> history(chosen_impl,ctx) then

chosen_impl← hw_impl
return chosen_impl

retrieves the available overlay that can be used to accelerate
such call if it exists. Finally, history() provides an estimation
of performance given the current context, relying, as the name
suggests, on performance history for the specific hardware
accelerator or the software execution of the original NumPy,
referenced in the pseudocode as sw_numpy. We account also
for the reconfiguration overhead for the estimates, checking
also whether the FPGA is configured with the considered
overlay (and removing the reconfiguration time in such case).

C. Data Transfers Optimization

To communicate and control DMAs from PYNQ, Xilinx
provides the users with a ready-to-use Python class that
manages the DMA operations. This interface is written using
CFFI6, that provides the possibility to call C functions, in-
cluded in properly compiled C libraries, directly from Python.
Our preliminary experiments showed that this implementation
introduces too much overhead for our purposes, and for this
reason, we have decided to re-engineer the DMA communica-
tion layer. We opted for rewriting completely the layer using
the Python/C API7 as it offered the best performance, at the
cost of a greater implementation effort. Also, we have removed
some time-consuming control routines present in the original
DMA interface offered by PYNQ when managing the buffers
needed for the data transfers. This can be done because of
the inclusion of the function-specific control routines in the
runtime code scheduling algorithm. Moreover, a lot of control
logic is present in the original implementation that is actually
superfluous in our case. In fact, with our approach, we hide the
DMA interface as everything is handled transparently from the
application developer’s perspective, while the PYNQ interface
is exposed directly to the user.

IV. PROPOSED DESIGN

In this section we present the hardware/software codesign
used to accelerate the Audio Signal Alignment application
and the improvements on the Cross-Correlation function and
Fast Fourier Transform we obtained following the approach
proposed in Section III.

A. Profiling

We used the cProfile Python library8 to profile the Audio
Signal Alignment application with different input audio sig-
nals. We decided to accelerate the Cross-Correlation function

6https://cffi.readthedocs.io
7https://docs.python.org/3.5/c-api/index.html
8https://docs.python.org/2/library/profile.html



𝑪𝑭𝑩$𝟏 … 𝑪𝑭𝟏 𝑪𝑭𝟎𝒓𝒆𝒔𝑩$𝟏 … 𝒓𝒆𝒔𝟏 𝒓𝒆𝒔𝟎

𝒚𝑩$𝟏 … 𝒚𝟏 𝒚𝟎

B

∗

+

𝒙𝟎𝒙𝒏 … 𝒙𝟏

0 … 0 𝒚𝒏 … 𝒚𝑩

	
𝒍𝒂𝒈_𝒎𝒂𝒙

𝑩
	 … 0

𝒙𝒏 … 𝒙𝒏$𝝉𝒎𝒂𝒙 … 𝒙𝟎 0 …

0 … 0 𝒚𝒏 … 𝒚𝑩7𝝉𝒎𝒂𝒙

…

…

𝐧𝐮𝐦_𝐩𝐨𝐢𝐧𝐭𝐬 𝐁

𝐁 7
𝐥𝐚𝐠_𝐦𝐚𝐱

𝐁
+ 𝟏 		+ 		𝟐 7 𝐧𝐮𝐦_𝐩𝐨𝐢𝐧𝐭𝐬 7

𝐥𝐚𝐠_𝐦𝐚𝐱
𝐁

+ 𝟏

𝑖𝑛𝑖𝑡	𝑏𝑢𝑓𝑓𝑒𝑟																								𝑐𝑜𝑚𝑝𝑢𝑡𝑒	𝐶𝐹	𝑣𝑎𝑙𝑢𝑒𝑠

𝐼𝑃	𝑐𝑜𝑟𝑒

Figure 3. Schema of the FPGA implementation of the Cross-Correlation function. The core has two local buffers to store portions of the signal and compute
more values in parallel. In this way the length of the two input streams is reduced by a factor equal to the size of local buffers. At each iteration, the core
outputs more than one value.

Local Buffer

Radix-2 Buttefly
Processing 

Engine

Local Buffer

Radix-2 Buttefly
Processing 

Engine
…

Local Buffer

Radix-2 Buttefly
Processing 

Engine

Local Buffer

Radix-2 Buttefly
Processing 

Engine
Output 

Reordering

Order 0 Order 1 Order n-1 Order n

Figure 4. Diagram showing the basic blocks used in the implementation of the hardware accelerator for the Fast Fourier Transform. It implements a streaming
and pipelined architecture, consisting of a chain of radix-2 butterfly processing engines. Each engine has its own local memory and is followed by a final
output reordering stage at the end of the chain.

Table I
HARDWARE RESOURCES UTILIZATION

Overlay LUT LUTRAM FF BRAM DSP
Correlation 55.87% 1.95% 40.55% 5.36% 38.18%

FFT 19.60% 9.48% 14.68% 76.79% 27.27%

This table reports the post-implementation hardware resources
utilization for the two overlays described in this paper. Both of them
are created with the Xilinx Vivado Design Suite for the PYNQ-Z1
board. The available resources on this device are: 53200 LUT;
17400 LUTRAM; 106400 FF; 140 BRAM; 220 DSP.

and the Fast Fourier Transform, that occupy respectively
86.73% and 0.33% of the total execution time (the remaining
part of the execution time is mainly used by the audio decoding
process). This decision was also dictated by the possibility to
parallelize the operations that compose these two functions.
Taking into consideration that the Cross-Correlation function
occupies most of the total execution time, we have chosen
to put our maximum effort on its acceleration. We produced
two different overlays that can be transparently used at the

Python level to speedup the execution time. What follows is
the description of the two overlay designs.

B. Cross Correlation function

Given two univariate random signals X , Y , with values
x1,x2, ...,xn, y1,y2, ...,yn over a time-span 1, ...,n, and defined
a delay τ , the Cross Correlation result of the two signals with
respect to the delay τ is defined as:

CFτ =
∑

n−τ

i=1 (xi− x̄0)(yi+τ − ȳτ)√
∑

n−τ

i=1 (xi− x̄0)2
√

∑
n−τ

i=1 (yi+τ − ȳτ)2

x̄0 =
1

n− τ

n−τ

∑
i=1

xi ȳτ =
1

n− τ

n

∑
i=τ+1

yi

where x̄0 and ȳτ are the sample means of X and Y over
interval n− τ .

If the above is computed for all delays τ = 0,1,2, ...n− 1
then it results in a full Cross Correlation function of twice the
length as the original signals X and Y . This function shows



0

30

60

90

10
24

40
96

81
92

16
38

4

32
76

8

65
53

6

Input size

E
xe

cu
tio

n 
tim

e 
[s

ec
] PYNQ-Z1 (only CPU)

PYNQ-Z1 (CPU+FPGA)

5

10

15

20

10
24

40
96

81
92

16
38

4

32
76

8

65
53

6

Input size

S
pe

ed
up

 [x
]

Figure 5. Execution time and speedup of the Cross Correlation function for
different signal dimensions. The input size represent the length of the signals.
With two signals of size 65536 we have been able to reach a speedup greater
than 20x.

the degree of similarity of process X with process Y , shifted
by a certain delay τ .

To implement the optimized version of this algorithm,
we have exploited the fact that it is possible to compute
different points of the function independently to parallelize
the computation. The schema of our implementation is shown
in Figure 3. We have used the Dataflow paradigm to stream
the input signals of arbitrary dimensions. In fact, unlike the
software implementation where the algorithm accesses each
point of the signals from the host DDR using any stride and
type of access (with almost no loss in performance due to host
cache and pre-caching mechanisms), on the programmable
logic random accesses to the DDR on board is a costly
operation that can take hundreds of clock cycles. To solve
this, it is possible to take advantage of registers (in the form
of Look-up Tables) and BRAMs, which, however, are available
in limited quantities. So we created two local buffers of size
B on BRAMs: the first used to store part of the first input
signal, acting as a shift register, and the second used to collect
partial results. The two streams contain the signals repeated
and shifted of a certain delay and are read iteratively. At the
end of each iteration, result points are sent from the core to
the shared DDR memory through an output stream. In order to
keep the two streams synchronized, we pad with zeros one of

0.005

0.010

0.015

0.020

0.025

10
24

20
48

40
96

81
92

16
38

4

Input size

E
xe

cu
tio

n 
tim

e 
[s

ec
] PYNQ-Z1 (only CPU)

PYNQ-Z1 (CPU+FPGA)

0.5

1.0

10
24

20
48

40
96

81
92

16
38

4

Input size

S
pe

ed
up

 [x
]

Figure 6. Execution time and speedup of the Fast Fourier Transform for
different signal dimensions. The input size represent the length of the input
signal. With a signal of size 16384 the hardware accelerated version reaches
a speedup of 1.3x.

the two inputs. Moreover, we further improved the design by
applying classical pipelining and loop unrolling optimization
to guarantee parallel execution and to mask the latency of
the operations. The BRAMs containing the local buffers are
partitioned to allow parallel accesses during the iterations.

nevertheless, as many operations are done in parallel, the
execution time of the algorithm is proportional to the input
streams size: the local buffers reduce the stream size by a
factor B, which in turn reduces the complexity of the algorithm
by the same factor. Being able to use bigger local buffers
should lead to even higher performance improvements. More-
over, our implementation can be easily scaled with respect to
the available resources on the board, by changing the local
buffer size and its partitioning factor

Figure 5 shows the results we have obtained with our
implementation with respect to the original NumPy Cross
Correlation function execution. In particular, we tested the
function call both when only the processing system (CPU)
of the PYNQ-Z1 is used and when also the programmable
logic (FPGA) is exploited. Thanks to the described design,
we have been able to achieve a speedup greater than 20x. The
hardware resources utilization is presented in Table I.



0

100

200

300

400

500

tim
e(

s)

name = cross correlation

1024 2048 4096 8192 32768 65536 100000 13000016384 
Input size

0

100

200

300

400

500

Ex
ec

ut
io

n 
tim

e 
[s

ec
]

name = algorithm

PYNQ-Z1 (only CPU)    
Raspberry Pi 3
PYNQ-Z1 (CPU+FPGA)

Figure 7. Execution time comparison between Raspberry PI 3 and PYNQ-Z1 with default NumPy library, and PYNQ-Z1 with our accelerated implementation
that exploits the programmable logic of the Zynq SoC. While considering two audio signals of size 130000, our solution is able to reach a speedup of 12.4x
with respect to the PYNQ-Z1 (only CPU) version and a speedup of 5.5x with respect to the Raspberry Pi 3 version.

C. Fast Fourier Transform

The second implementation we present is for the compu-
tation of the Fast Fourier Transform. Similarly to the Cross-
Correlation accelerator presented, we opted for a streaming
computation pattern, to allow continuous data processing.

Figure 4 shows the diagram of the Fast Fourier Transform
hardware accelerator, while the hardware resources utilization
is presented in Table I. More specifically, we relied on Xilinx’s
FFT IP core [16], and configured it to implement a streaming
and pipelined architecture, consisting of a chain of radix-2
butterfly processing engines. Each engine has its own local
memory and is followed by a final output reordering stage at
the end of the chain.

Figure 6 shows the comparison between the pure software
and the hardware/software execution times. With a signal
of size 16384, the hardware accelerated version reaches a
speedup of 1.3x. We note that with a signal of size 8192
the CPU-only execution time is smaller than the hardware
implementation. This happens because the time overhead
introduced by the data transfer between the DDR and the
programmable logic is greater than the time gained by the
accelerator in the computing phase. However, thanks to our
Runtime Code Scheduling algorithm, the right implementation

is chosen at runtime based on the length of the signal.

V. RESULTS

This section describes the evaluation settings we adopted to
test our application and reports the results comparison in terms
of execution time. Since we want to check if our solution is
valid, not only with respect to the PYNQ-Z1 processor but also
with respect to a different embedded system device we have
tested our implementation on a Raspberry Pi 3 (see Section
II-C).

We have run the tests in the following way: we took two
audio files of the same conference from AMI Dataset EN2001a
[17]. These audio files have been recorded by two different
microphones placed in different positions. We then extracted
several times random samples: one of this is the shortest one,
the other one is longer and includes the same portion of the
conference that has been recorded in the first audio. We then
added a random zero-mean Gaussian noise to both signals and
we repeated these tests multiple times for each different length
of the samples. We then computed averages of the overall
execution time and of the final error.

The results are presented in Figure 7. As shown in the
graph, our solution outperforms both the PYNQ-Z1, when it



runs the pure software implementation of the functions and the
Raspberry Pi processor. Specifically, with two audio signals of
size 130000, the FPGA accelerated implementation is able to
reach a speedup of 12.4x with respect to the PYNQ-Z1 (only
CPU) and a speedup of 5.5x with respect to the Raspberry Pi 3.
The results also include the reconfiguration time of the FPGA
when a new overlay is required. As expected, the Runtime
Code Scheduling choose the right implementation to keep
the execution time of the PYNQ-Z1 (CPU+FPGA) solution
smaller or equal than the PYNQ-Z1 (only CPU) one.

As already said, the Cross-Correlation computation is the
most time-consuming aspect of the algorithm, that is why we
can clearly notice a much faster execution of the application
when FPGA is used. This fact is relevant in the audio field
since we usually have a high sample rate frequency. Our results
also show that the hardware implementation percentage error
is not bigger than the software one. This happens because
hardware implementation approximation is quite small and
does not change the value in which the peak is located in
the Cross-Correlation.

Finally, this experimental setting describes how this algo-
rithm performs quite well in low-noise environments, but this
hardware implementation could be used also in more com-
plex and less noise-sensible algorithms, such as the Adaptive
Cross-Correlation Method explained in [5]. In these kinds of
algorithms, we can expect similar or higher speedup since they
require multiple Cross Correlation computations. In case of
more than two signals, the speedup will be even bigger.

VI. DISCUSSION AND FUTURE DIRECTIONS

Regarding future work, we are thinking to pack the two IP
Cores within the same overlay, to reduce the reconfiguration
time overhead. Moreover, we want to take into consideration
partial dynamic reconfiguration of the programmable logic
to better exploit the FPGA resources. While doing this, an
improvement of our Runtime Code Scheduling is required
to find an optimal solution for the application execution,
following different reconfiguration patterns.

We also will continue to optimize more scientific functions
following the proposed approach to offer an increasingly
complete solution for data scientists and software developer.
We want to compare the power efficiency of the embedded
system devices when our solution is running on FPGA with
respect to the pure software execution.

Finally, to try our application in a real-time scenario, we are
planning to exploit our optimized version of the application to
align multiple electrocardiographs measured from an audience
to compute the overall quality of attention.

VII. CONCLUSIONS

We believe that scientists and pure software developers
should be allowed to benefit from hardware acceleration while
focusing on what it is most important to them, without
the need to invest precious time in learning how to design
and deploy hardware accelerators. For this reason, we have
proposed in this paper an hardware-accelerated version of the

Audio Signal Alignment application, that brings transparent
hardware acceleration on Zynq SoCs, when integrated within
the PYNQ platform. We described our approach and our
function-optimization workflow by showing the implementa-
tion processes and the results of two different overlays: the
Cross-Correlation function and the Fast Fourier Transform.

To demonstrate the validity of our solution, we have com-
pared the execution times of the different implementations
with three different system settings: the PYNQ-Z1 board and
the Raspberry Pi 3 device when only the CPU is used, and
the PYNQ-Z1 board when both the CPU and the FPGA
are exploited. The application that uses our FPGA-optimized
version of the application reaches a speedup of 12.4x with
respect to the PYNQ-Z1 software execution and a speedup of
5.5x with respect to the Raspberry Pi 3 software execution.

REFERENCES

[1] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray et al., “A
reconfigurable fabric for accelerating large-scale datacenter services,”
in Computer Architecture (ISCA), 2014 ACM/IEEE 41st International
Symposium on. IEEE, 2014.

[2] “PYNQ: Python Productivity for Zynq,” http://www.pynq.io (accessed:
24th of September 2017).

[3] “IEEE Spectrum: The 2017 Top Programming Languages,”
https://spectrum.ieee.org/computing/software/the-2017-top-
programming-languages (accessed: 5th of October 2017).

[4] I. Stojmenovic and S. Wen, “The fog computing paradigm: Scenarios
and security issues,” in Computer Science and Information Systems
(FedCSIS), 2014 Federated Conference on. IEEE, 2014, pp. 1–8.

[5] K. J. Coakley and P. Hale, “Alignment of noisy signals,” vol. 50, pp.
141 – 149, 03 2001.

[6] T. Giannakopoulos, “pyaudioanalysis: An open-source python library for
audio signal analysis,” PloS one, vol. 10, no. 12, 2015.

[7] A. G. Schmidt, G. Weisz, and M. French, “Evaluating Rapid Appli-
cation Development with Python for Heterogeneous Processor-based
FPGAs,” in Proceedings of the 25th International Symposium on Field-
Programmable Custom Computing Machines, ser. FCCM ’17. IEEE,
2017.

[8] I. of Electrical and E. Engineers, “Ieee standard for information
technology-standardized application environment profile-posix realtime
application support (aep),” 1999.

[9] M. P. A. Hukeri and M. P. Ghewari, “Review paper on iot based
technology,” 2017.

[10] N. Constant, D. Borthakur, M. Abtahi, H. Dubey, and K. Mankodiya,
“Fog-assisted wiot: A smart fog gateway for end-to-end analytics in
wearable internet of things,” arXiv preprint arXiv:1701.08680, 2017.

[11] W. Anwaar and M. A. Shah, “Energy efficient computing: A comparison
of raspberry pi with modern devices,” Energy, vol. 4, no. 02, 2015.

[12] J. Kammerl, N. Birkbeck, S. Inguva, D. Kelly, A. J. Crawford, H. Den-
man, A. Kokaram, and C. Pantofaru, “Temporal synchronization of
multiple audio signals,” in 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp.
4603–4607.

[13] D. P. W. Ellis, C. Cotton, and M. Mandel, “Cross-correlation of beat-
synchronous representations for music similarity,” 03 2008, pp. 57 –
60.

[14] P. Shrstha, M. Barbieri, and H. Weda, “Synchronization of multi-
camera video recordings based on audio,” in Proceedings of the
15th ACM International Conference on Multimedia, ser. MM ’07.
New York, NY, USA: ACM, 2007, pp. 545–548. [Online]. Available:
http://doi.acm.org/10.1145/1291233.1291367

[15] V. J. Jiménez, L. Vilanova, I. Gelado, M. Gil, G. Fursin, and N. Navarro,
“Predictive runtime code scheduling for heterogeneous architectures.”
HiPEAC, vol. 9, 2009.

[16] Z. Jin, L. Jun, and Z. Shuang, “The design and implementation of fft
algorithm based on the xilinx fpga ip core,” 2012.

[17] “AMI Dataset,” http://groups.inf.ed.ac.uk/ami/ (accessed: 27th of April
2018).


