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Abstract—In recent years Face Detection (FD) became the base
of multiple applications, which often require the computation
to be performed locally with low latency but with limited
resources and energy. The spreading of Deep Convolutional
Neural Networks (DCNNs), which achieve high accuracy and
generality, for FD solutions conflicts with these constraints, and
calls for solutions based on Field Programmable Gate Arrays
(FPGAs) for a good trade-off between flexibility and efficiency.
While FPGAs are increasingly used, their offer is still limited in
terms of configuration and different chips often require expensive
re-design phases. Instead, developers ideally desire solutions
whose resources can scale proportionally to the demands, as in
distributed systems. This work investigates how to implement
an accurate FD solution based on a DCNN on a distributed,
embedded system equipped with FPGAs, proposing a general
approach to reduce the DCNN size and to design its FPGA
cores. This solution is compared to the original classifier in
terms of accuracy, performance, and energy efficiency within
an embedded and server-like scenario.

Index Terms—DCNN, CNN, Quantization, Embedded, FPGA,
Distributed, Face detection, PYNQ-Z1, HDL, HLS

I. INTRODUCTION

FD essentially consists in detecting the regions within an
image that contain a human face with a given likelihood.
It is the base of multiple services and products, like photo
analysis in social networks, entertainment systems, movies
production, and others. Particularly important are also face
recognition systems, which start from FD to find the image
region most likely to contain the face to be authenticated. A
recent use case is marketing applications that count the number
of users to measure the effectiveness of an advertisement
and possibly customize it based on features like gender, race
or age. These kinds of systems are often deployed close to
the user, have soft-real-time constraints and cannot resort to
cloud-like computing facilities due to limited connectivity and
budget. For these reasons, designers adopt embedded solutions
that perform the computation locally but are constrained in
power consumption, latency, and design budget.

While initial solutions in the start of the 2000s had two
different steps of feature extraction and classification, designed
separately, in the latest years DCNN models unified them,
being also robust to geometrical transformations and noise and
highly generalizable, provided that a sufficiently large training
set is available.

Yet, DCNNs’ classification power comes at the cost of high
compute demands, which contrasts with the real-time require-
ments and power/energy constraints of embedded applications
for FD. To increase performance and energy efficiency, the
research recently focused on specialized accelerators, either on
FPGAs solutions [1] or custom Application Specific Integrated
Circuits (ASICs) [2]. However, even in the case of FPGAs,
designers are constrained by the market offer, so that changes
in the DCNN features (like adding more layers) may also cause
changing the target chip and in turn force a major re-design,
especially if the new chip has a different resources distribution.
Essentially, available hardware resources and design effort do
not “scale” proportionally to the application demands.

This “scalability” can yet be achieved if resources are
added proportionally to the design size, as in contemporary
distributed systems, with design components and practices that
should also be scalable. To investigate these guidelines, we
propose an embedded, distributed system composed of FPGA-
based processing elements that cooperate within a single
application. To achieve these goals, we make the following
contributions:

1) starting from a state-of-the-art DCNN for FD [3], we
show how to map it to an embedded, distributed system
of multiple FPGAs

2) we prototype these system via low-power, embedded
devices with very limited resources such as the Xilinx
PYNQ-Z1

3) we evaluate the prototype system against a pure fully
optimized software implementation and a server-class
Graphic Processing Unit (GPU) implementation, with
respect to several metrics

This paper is organized as follows. Section II introduces the
reader to the context of this work, reviewing the basic concepts
and the relevant works in the literature. Section III explains
the FD approach of HyperFace, with the DCNN classifier at
the base of our work and how we adapted it to our use case.
Then, section IV explains the designs of the proposed solution,
from the quantization phase to the details of the FPGA cores,
whose implementation is discussed in section V. Section VI
evaluates the proposed approach, while section VII discusses
limitations and possible future work.



II. CONTEXT DEFINITION

This sections introduces the context of this work by pre-
senting background material in section II-A and related work
in section II-B.

A. Background

A Convolutional Neural Network (CNN) is a sequence of
layers which takes a generic “raw” input and returns scores
for each class the input may belong to. The first part of a
CNN performs feature extraction, where subsequent layers
extract more and more complex features out of the initial
input, and a second classification part that aggregates the
features and provides the prediction scores. The convolutional
layer is the core building block of a CNN and is the most
computationally heavy part. Each convolutional layer has a
set of filters, generally small in size, that run through the full
input to extract a set of relevant features. When the filter slides
over the width and height of the input volume a 2D activation
map, called feature map, is produced, giving the responses
of that filter at every spatial position. The pooling layer, also
called sub-sampling layer, is often inserted between successive
convolutional layers. It reduces the spatial size and extracts the
most relevant features by applying operators such as MAX or
MEAN on a small filter area, producing a single output pixel.

After the feature extraction, the classification occurs through
a sequence of fully-connected layers, with the last layer having
as many neurons as classification classes, with a normalization
operator (e.g. SoftMax) usually applied on the output scores
to interpret them as probabilities.

These three main types of layers are stacked to form
the CNN architecture. When the number of stacked layers
increases, the CNN is classified as DCNN and has even higher
storage, compute and energy demands. To tailor DCNNs to
embedded scenarios, they should be resized to the limited
resources budget: assuming the structure and hyper-parameters
are fixed, the main reduction technique is quantization (also
called discretization), through which the designer can suitably
trade the resources usage with the accuracy loss. In general,
quantization consists in using integer types instead of float-
ing point precision, often also significantly reducing the bit-
width of integer values to 8-bit or even less. Quantization
is especially effective when inputs, weights, and biases have
narrow value ranges and the model is inherently resilient to
noise, as in the case of CNNs. Here, the quantization process
tracks both the weights and biases ranges for each layer by
recording minimum and maximum, and then each floating
point weight/bias is approximated to the closest integer value
within the linear interval [0, 255]. Central Processing Units
(CPUs) and GPUs usually have little to no benefit from
quantization as they support a fixed set of operations and
data types, while ASIC or FPGA solutions can achieve higher
compute density and energy efficiency.

B. Related Works

Nowadays, FD techniques can be roughly categorized into
two general groups: one with rigid templates, learned mainly

via boosting-based methods with a boosted cascade of clas-
sifiers like DCNNs; and Deformable Parts Models (DPMs),
which describes a face by its main parts and takes into
consideration potential deformations between them.

DPMs-based models, such as [4], are typically divided into
two parts: a coarse root filter that approximately covers an
entire face, and higher resolution part filters that cover smaller
details such as eyes, nose, and mouth. After discovering a root
location with a high score, the corresponding part locations can
be found by looking up the optimal displacements. Another
solution for FD adopts local Edge Orientation Histograms
(EOH) [5] as features. EOHs are largely invariant to global
illumination changes and capture geometric properties of faces
better than linear edge filters. Instead, the Histogram of Ori-
ented Gradient (HOG) method [6] is based on evaluating well-
normalized local histograms of image gradient orientations in
a dense grid. Here, the image window is divided into small
“cells”, where a local 1-D histogram of gradient directions or
edge orientations is accumulated. Then, considering a block of
multiple cells on which the “energy” of all local histograms
is accumulated, each cell is contrast-normalized with its block
“energy”, finally an Support Vector Machine (SVM) classifier
it run to predicted the feature class [4], [7].

To generalize over different illumination conditions or
poses, different CNN models have been developed, which
can automatically derive problem-specific feature extractors
from the training examples. Recent examples of CNN based
architectures are [8], [9] and [10] producing state-of-the-
art results on many challenging and publicly available FD
datasets.

III. FACE DETECTION DCNN

This work investigates how to port a state-of-the-art DCNN
named HyperFace [3] to an embedded, distributed system for
FD. Therefore, section III-A explains the HyperFace structure
and training options, while section III-B explains how it was
adapted to our use case and system.

A. The Hyperface model

In the literature, tasks like FD, landmark localization,
pose estimation and gender classification have generally been
solved separately, but recent research showed that correlations
among them can speed up both training and classification
[11]–[13]. HyperFace [3] is a solution based on a CNN for
simultaneous FD, landmark localization, pose estimation and
gender classification that exploits the feature information that
was shown to be hierarchically spread through the network
[14]: the first layers search for edges and corners and are more
relevant to landmark localization and pose estimation, while
the deeper layers are more complex and class-specific and are
thus more specific to gender prediction and FD.

HyperFace first identifies candidate regions, also called
proposed regions, that likely contain objects via the Selective
Search (SS) algorithm [15]; this algorithm first over-segments
the image based on the intensity of pixels, and then groups
these segments in a bottom-up fashion based on a similarity
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Fig. 1. The original HyperFace architecture

metric. The output candidate regions are then decreased in size
to 227×227 pixels, in order to fit the model input dimensions.
Based on the used SS parameters, the HyperFace authors
generate an average of 2000 proposed regions per image.

HyperFace assigns to each candidate region a face/non-face
score, and if the predicted class is “face” it also returns the
other feature predictions. Its DCNN classifier, shown in Fig.1,
is based on Alexnet [16] and consists of two main parts. The
first part, the “Truncated Alexnet”, is composed of five con-
volutional layers, where the first two ones and the last one are
followed by a max pooling layer; the last three fully-connected
layers of Alexnet are not present in HyperFace as they encode
image-specific classification information, not needed for pose
estimation and landmarks extraction. After each pooling layer,
a local response normalization is applied to “adjacent” feature
maps, in order to better generalize the network to the various
tasks. For the same purpose, hyperfeatures from Max1, Conv3
and Pool5 are “concateneted” together into a high-dimensional
6 × 6 × 768 stack of feature maps, with intermediate layers
Conv1a and Conv3a that convert features from Max1 and
Conv3 to the same size of 6× 6× 256 Pool5 output.

The second part, the “Fusion CNN”, contains no pooling
layer in order to avoid local invariance, thus keeping precise
location information for FD and landmarks localization tasks
1. Here, the fused feature map from the Truncated Alexnet is
reduced in size via the convolutional layer ConvAll and the
fully-connected layer FcFull, from where the various tasks are
learned via five fully-connected layers.

As in the original implementation [3], we trained HyperFace
from the AFLW dataset [17] via TensorFlow, using standard
32-bit floating-point data types, with 21,997 real-world images
with full pose, expression, ethnicity, age, and gender varia-
tions. Out of these 21,997 images, 19,000 images have been
used for training, 2,000 for validation and 1,997 for testing
using the HyperFace loss function. The validated classification
accuracy over the ground truth obtained after two epochs of

1Pooling layers decrease spatial resolution, hence removing the information
about the exact location of a feature; in particular, max pooling’s strength
consists in detecting the presence feature rather than its exact location.

Fig. 2. Our FD architecture, adapted from HyperFace; both the adapted
DCNN structure and the 5 final stages after implementation are shown

training is 97.04%, which is sufficient for our purposes.

B. Our FD model

Thanks to the modularity of HyperFace, we tailored its
architecture to a FD-only task, which is the goal of our work
and is sufficient to investigate how to efficiently implement
a DCNN on a distributed, FPGA-based embedded system;
indeed, the other tasks can be considered as extensions to
this work. As Fig.2 shows, we removed all tasks other than
FD and the related fully-connected layers, leaving FcDet1 and
FcDet2 unmodified. Instead, since we removed ConvAll due to
single task left, we modified FcFull so that it takes in input the
6×6×256 tensor coming from Pool5, while still returning an
output of size 3072. Another noticeable difference with respect
to HyperFace is the removal of response normalization steps,
which are assumed to have a minimal impact, especially when
limiting the number of tasks [18].

IV. SYSTEM DESIGN

This section explains the design strategies to build our
systems. The FD model is first quantized to reduce storage
and increase the operations density, as section IV-A explains.
Then, section IV-B explains the architecture of a single node
of the distributed system, which computes part of the FD
DCNN model. Which part can be offloaded to a single node
highly depends on the CNN characteristics and on the available
FPGA resources, and is discussed in detail in section V with
respect to our use-case. However, the accelerator architecture
of section IV-B and its cores, detailed in section IV-C, are
designed to be modular and can be scaled to different use-
cases.

A. Quantization Process

As from section II-A, we employed TensorFlow to empir-
ically observe the ranges of inputs, outputs, and intermediate
Multiply and Accumulate (MAC) values throughout the vari-
ous FD modelgemm layers, by running it on a representative
subset of the input images. Table I shows these ranges,
typically very narrow, in terms of minimum and maximum
values, and also shows the scale value, i.e. the minimum
variation of the real value that causes a variation also in the
quantized value; the scale is obtained as (max − min)/256
since we use 8 bits, which is sufficient to keep good accuracy
as validated in section VI.

The quantized matrix multiplication implemented in the
cores for the convolution is based on gemmlowp [19], an
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TABLE I
MIN, MAX AND SCALE VALUES FOR THE CONVOLUTIONAL STAGES

Variable Parameters Conv1 Conv2 Conv3 Conv4 Conv5

Weights
max 0.035250 0.033975 0.035723 0.033043 0.036801
min -0.038022 -0.036101 -0.036986 0.032491 -0.036293
scale 0.000287 0.000274 0.000285 0.000256 0.000286

Intermediate
Accumulations

max 4.055379 3.00309 2.880889 2.857010 3.528848
min -4.023486 -1.932962 2.522948 -2.194070 -2.558575
scale 0.031681 0.019357 0.021191 0.019808 0.023872

Biases
max 0.167030 0.109820 0.096142 0.093614 0.110384
min -0.170138 -0.105325 -0.093545 -0.090699 -0.106447
scale 0.001322 0.000843 0.000743 0.000722 0.000850

Output
max 4.121626 3.037831 2.910869 2.785253 3.608217
min -4.002198 -2.012389 2.575947 -2.278581 -2.515303
scale 0.031858 0.019804 0.021516 0.019858 0.024013

open source low-precision matrix multiplication library, which
avoids overflows in MACs by internally using more than 8
bits (typically 16). In order to requantize the results from
these intermediate MACs to the 0 − 255 output domain, we
adopted the same approach of gemmlowp based on a sequence
of offset/muliply/shift operations [20].

B. Node System Architecture

The quantization process, as stated at the beginning of
this chapter, significantly reduce the resources utilization. In
particular, when dealing with FPGAs, integer arithmetic im-
plies fewer Digital Signal Processors (DSPs), Look-Up Tables
(LUTs) and Flip-Flops (FFs), allowing to make the most of
the available resources. The embedded target Xilinx PYNQ-
Z1 Platform has a limited amount of resources, and even if
the network has been quantized, it would not be reasonable in
terms of latency to port the whole network on a single PYNQ-
Z1, more precisely with a single bitstream which configures
the platform to execute the entire network. Depending on the
target goal, the objective can vary from using a single PYNQ-
Z1, which would increase the latency since the hardware needs
to be reconfigured a certain number of times in order to cover
the whole network computation, or using a cluster of PYNQ-
Z1 and therefore computing the different stages in pipeline to
achieve a competitive latency.

Heterogeneous embedded devices are typically designed as
a System on Chip (SoC), where the accelerator, here the
FPGA, resides on the same die of the CPU and also shares
the same physical memory; Fig.3 shows this organization
together with our designed architecture. This SoC architecture
allows data sharing and communication between computing
resources, which can easily cooperate. Indeed, in our reference
PYNQ-Z1 platform, the CPU performs the initial data pre-
processing, in particular the extraction of the candidate regions
via the SS algorithm, and resizes them to the 227×227 DCNN
input size. Then, the CPU sends the candidate regions and the
weights to the FPGA logic, while the biases are sent only
during initialization since they can fit in the FPGA on-chip
Block Random-Access Memory (BRAM). As from Fig.3, two
Direct Memory Accesss (DMAs) cores are deployed in the
design to transfer candidate regions and weights in parallel.
Note that in case the DCNN is split on multiple nodes, where
each node runs only some layers, the FPGA sends intermediate
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Fig. 3. High level block desing of the proposed architecture
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results back to main memory and the CPU sends them to the
next node, where they are sent to the local FPGA logic for
the following compute-heavy stage.

C. The Accelerator

Fig.4 shows the architecture to compute a single convolu-
tional layer followed by a max-pooling layer, also considering
the steps to quantize the input values and to requantize the
outputs to the desired bit-width: in HyperFace, a convolutional
layer is always followed by a Rectified Linear Unit (ReLU)
layer, and sometimes by a max-pooling layer as in Fig.1; all
these components communicate via Firt-In, First-Out (FIFO)
queues and no centralized controller nor state is needed, thus
achieving a purely dataflow design. In case larger parts of the
DCNN are offloaded to a single FPGA, multiple cores se-
quences convolutional-ReLu-pooling can be chained together
storing in main memory only the final results.

The cores in Fig.4 are designed as follows.
a) Convolutional Core: The Convolutional Core per-

forms the input convolution with the weight via a sequence of
MACs. For any DCNN, two sources of parallelism exist and
are used in the design to boost performance. The first source is
called intra-layer parallelism and is due to the independence
of output feature maps, as different filters, i.e. different weight
sets, can be applied simultaneously to the same input, which
can then be re-used. The second source of parallelism, referred
to as intra-feature-map, is the computation of each output
feature map, where input features maps can be multiplied by
the weight in parallel and then accumulated via an accumula-
tion tree. However, the number of intra-feature-map parallel
operations can be quite high for our FD DCNN, where, for
example, Conv4 reaches 13 × 13 × 384, which can quickly
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saturate the available DSPs. Therefore, DSPs must be properly
time-multiplexed among independent operations on the same
input feature map, or even among different output feature
maps.

The proposed architecture is based on this approach, com-
puting each convolution with one DSP: the DSP acts as a
MAC unit, performing an element-wise multiplication between
the input feature map and the corresponding weight-set, while
internally accumulating the partial results of the filtering
window. The input data-path works at a sub-multiple of the
clock frequency using a clock-enable signal, whose value is
strictly dependent on the filter size and is multiplexed so that
every element can be consumed by the same MAC, one at a
time. Thanks to this design it is possible to map different
convolutional layers on the same hardware, provided they
have the same filter size. This solution offers a substantial
reduction in the amount of DSPs needed for the convolution,
leaving room to leverage intra-feature-maps and intra-layer
parallelism degrees and leveraging data-sharing for less off-
chip data movement.

b) DataSaver: In a naı̈ve convolutional core design, the
number of input transfers from main memory would be equal
to the number of output features divided by the intra-layer
parallelism. To leverage data reuse and increase performance,
the DataSaver reads the input feature maps from main memory
through the DMA just once and stores them in the BRAM,
thus acting as a pre-fetching and caching core for the following
computational cores. Furthermore, the DataSaver may re-order
the input data, coming from the previous layer in the DCNN,
in case data have a different ordering, enforced by the previous
intra-layer parallelism, then the current layer requires in input.

c) Input and Weights Quantization Machines: Input data
coming from the DataSaver and weights coming directly from
main memory are normalized by subtracting their zero values.

d) BiasAdd Relu and Requantization Core: If the intra-
feature-maps parallelism does not match with the number of
input feature maps, partial results have to be first accumulated
in order to obtain the actual final results. Then, biases, not
considered so far, are cached in BRAM during initialization
and should be added to the final output of the Convolutional
Core. To perform this operation, the BiasAdd Relu and Re-
quantization Core first subtracts the bias zero point to the
output of the convolution, then rescales this value to the target
range and finally adds the bias. Then, it performs a second
requantization to scale this value to the final 8-bit output The
special case in which the output value is correctly scaled but
exceeds 255 should be considered, which could happen in the
case in which the corresponding floating point value is outside
the observed fixed ranges. In this situation, the output value
is automatically set to 255. Along with this outlier situation,
the ReLU operator, based on the current output zero point, is
also applied.

e) Max-Pooling Core: It is a substantially simplified
version of the Convolutional Core, sharing the same data
access pattern but applying the simpler MAX operator, which
can be synthesized with common FPGA logic with little DSPs

usage. Adopting the same parallelism as the Convolutional
Core, thus analyzing the same number of output feature maps
produced in parallel, allows sustaining the same throughput,
as the dataflow style prescribes.

V. IMPLEMENTATION

As a reference implementation, we use a fully optimized
software implementation of the whole FD network based
on state-of-the-art, floating-point Basic Linear Algebra Sub-
programs (BLAS) routines [21] implemented and optimzed
for the PYNQ-Z1 ARM-based SoC within OpenBLAS [22],
which are natively multi-threaded. In particular, we used the
sgemm routine for matrix-matrix multiplications and sgemv for
matrix-vector multiplications, employed throughout all convo-
lutional layers and all fully-connected layers respectively.

For the FPGA implementation, we split the FD model
layers in different parts, called stages, based on their FPGA
requirements of the most constraining resource, in all cases
DSPs. Table II shows the characteristics of the three stages
designed to run on a single PYNQ-Z1 node, while Table III
shows those of the six stages highlighted with colored boxes
in Fig.2. In all cases, the number of times the logic must be
called from CPU to compute an entire layer, called Iterations
in the tables, is computes as

Iterations =
OutputFMs

Intra− Layer
× InputFMs

Intra− Feature−Maps

The two implementations shown in the tables represent the
extreme possibilities available with a distributed system. On
one hand, all FD DCNN layers are run in a single node,
but cannot be simultaneously deployed on the scarce FPGA
resources; hence, the application has to run one bitstream
at a time and re-configure, which takes 300ms, around two
orders of magnitude more than a stage run. Here, the only
possible optimization is batching multiple inputs for each re-
configuration, which is possible as an image contains hundreds
of proposed regions with the model approach but may be
limited by the available memory or in different scenarios (e.g.
in case an entire photo is analyzed at once). In our tests, for
example, we adopted this strategy as each image contains on
average 650 candidate regions, which occupy around 146MB
of main memory out of 512MB on the PYNQ-Z1. As from
the last row of Table II, Stage3, Stage4, and Stage5 are
mapped into the same stage with proper multiplexing logic
for inputs and outputs between the respective Convolutional
and BiasAdd Relu and Requantization Cores and the other
cores for data movement and quantization; despite this choice
reduces the available intra-layer parallelism to only one due
to DSPs, it avoids two intermediate re-configurations. Once
the last stage has been computed, all the candidate regions
pass through the classification stage implemented in software,
which returns the face/non-face for each candidate region.

On the other hand, the distributed system of Table III with
six PYNQ-Z1 nodes achieves the best performance, at the
cost of a proportionally high resources usage. Here, the appli-
cation implements a fully pipelined communication between
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TABLE II
SINGLE PYNQ-Z1 SYSTEM STAGES

Stage FMs Parallelisms Iterations Conv. Core
Input Output Intra-Feature-Maps Intra-Layer Frequency [MHz]

Stage1 3 96 3 48 2 140
Stage2 96 256 96 3 86 120
Stage3 4 5 256, 384, 384 384, 384, 256 128 1 2688 100

TABLE III
DISTRIBUTED SYSTEM STAGES

Stage FMs Parallelisms Iterations Conv. Core
Input Output Intra-Feature-Maps Intra-Layer Frequency [MHz]

Stage1 3 96 3 48 2 140
Stage2 1 96 126 96 3 42 120
Stage2 2 96 130 96 3 44 120
Stage3 256 384 128 2 384 150
Stage4 384 384 128 2 576 150
Stage5 384 256 128 2 384 150

nodes, mimicking the structure of Fig.2 via 100Mb/s Ethernet
channels connected in a star topology. As from Table III,
the second convolutional layer is split to two different stages
(Stage2 1 and Stage2 2) to balance the latency with respect
to all other stages in this design: indeed, the latency of the
second stage in Fig.2 is twice the latency of the other stages,
and splitting allows balancing the time each node spends
computing; furthermore, as the FPGA computation is still the
bottleneck with respect to the data transmission, the latency of
the first node (sending data twice) is roughly balanced anyway.
The communication between the nodes is implemented with
Message Passing Interface (MPI) [23], using synchronous and
not blocking primitives together with double buffering in order
to parallelize input receiving, FPGA computation and output
forwarding to the next node.

In all our PYNQ-Z1 implementations, the software part is
written in C/C++ to minimize overheads and runs on the ARM
Ubuntu Linux distribution natively installed on PYNQ-Z1. The
computational cores on FPGA are written in SystemVerilog
to efficiently use available resources, while the cores for data
movements and quantization are written in High Level Synthe-
sis (HLS) to be easily modifiable for varying requirements of
access patterns and quantization strategies. Finally, the DMA
cores are those available in Xilinx Vivado 2017.2, which are
directly controlled by the software via memory mapping, thus
avoiding expensive user-kernel context switches.

VI. EXPERIMENTAL RESULTS

Our goal is to achieve similar accuracies in terms of FD
scores with respect to the reference TensorFlow results with
floating-point, and a speedup in terms of latency with respect
to the software implementation. In the following, we will refer
to the software-only solution as ARM and to the FPGA-based
implementation as ARM-FPGA; both can run in a single node
or distributed settings, as from section V.

Additionally, the original implementation in TensorFlow
is run with the same input on an NVIDIA GeForce GTX
960 GPU with an Intel Core i7-6700 CPU at 3.40GHz. This
platform, referred to as GPU, represents a server-class equip-
ment that can achieve the best performance among commonly

TABLE IV
AVERAGE ERRORS AND STANDARD DEVIATIONS.

Implementation KPI Face Non-Face

ARM
Average Error 9.194× 10−8 1.094× 10−7

Average Relative Error 9.439× 10−7 2.053× 10−7

Standard Deviation 712.735× 10−6 712.741× 10−6

ARM-FPGA
Average Error 3.497× 10−3 3.497× 10−3

Average Relative Error 38.754× 10−3 6.749× 10−3

Standard Deviation 225.705× 10−3 224.021× 10−3

available solutions, but has a much higher power budget that is
unavailable in embedded scenarios (120W). The experiments
on the target GPU are run with a batch size of 137, in order
to fully exploit its parallelism; the batch size is limited by
the memory on the GPU card. All the experiments have been
conducted on 100 input images for both ARM and ARM-
FPGA implementations, with each image having an average
650 candidate regions generated through the SS algorithm,
for a total number of input candidate regions of 65,978. In the
following sections, several aspects are evaluated, and the time
results are referred to the pure convolutional part since it is
the portion of the DCNN that it has been ported on hardware,
being it the most computational intensive part of a DCNN
model.

A. Accuracy Loss with Quantization

In order to evaluate the loss of accuracy due to quantization,
we compute the average error, the average relative error and
the standard deviation on the computed scores expressed as
real numbers as shown in Table IV. We also take into account
the percentage of the total number of correct predictions
defined as binary values, thus mapping all the scores greater
than 0.5 as 1 or as 0 otherwise. Analysing the pure total
number of correct predictions with respect to the reference, we
achieved 100% and 99% (65,778 over 65,978). The difference
between the two is motivated mainly by the used data types:
the ARM implementation uses a single precision floating point
data type, as TensorFlow does, while the ARM-FPGA imple-
mentation uses for the convolutional part unsigned integer
8-bit data type and floating-point data type for the fully-
connected computation (that runs in software). Looking at the
different computed metrics in Table IV, both implementations
show almost irrelevant errors with respect to the reference
TensorFlow implementation.

B. Per-Stage Execution Times

The per-stage average execution times are shown in Fig.5
and refer to the computation of a single candidate region; this
figure shows only the best representatives for each solution,
i.e. the distributed implementation for both ARM and ARM-
FPGA and the GPU implementation. For GPU, the execution
times are obtained by dividing the time on the whole batch
by the number of images in the batch. As it can be seen
from Fig.5, the ARM implementation remains two orders of
magnitude slower compared to ARM-FPGA, while the ratio
between this implementation and the GPU implementation
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Fig. 5. Trend of the average per-stage execution times

TABLE V
PER-STAGE AVERAGE EXECUTION TIMES [MS]

Stage GPU ARM-FPGA ARM

Stage1 0.29 6.18 218.12
Stage2 1 0.07 9.07 353.85
Stage2 2 0.08 9.25 365.08
Stage3 0.10 6.18 214.95
Stage4 0.13 9.26 321.16
Stage5 0.09 6.39 227.70

remains around one order of magnitude, despite the different
classes and power/energy characteristics of these systems.

Analysing the obtained speed-ups, on average our ARM-
FPGA implementation obtains a 60× per layer speed-up
compared with the ARM implementation, while it remains on
average three times slower than the GPU one. Indeed, the
GPU implementation consistently outperforms our distributed
ARM-FPGA system, as expected since the used GPU has a
higher power consumption and is by design well suited to
these tasks and highly parallel. Comparing the ARM and the
ARM-FPGA implementations, the ARM-FPGA is capable to
obtain a per-layer speed-up of 37× on average.

C. Per Stage Hardware Resource Usage

Analyzing the resources usage, as section V already sug-
gested, the most critical FPGA resource are DSPs. In this
specific work, the Convolutional Core is the one which takes
the most number of DSPs, out of the BiasAdd Relu and
Requantization Core which uses some of them. As can be
noted by Table VI, reporting the different resource utilization

TABLE VI
HARDWARE RESOURCE USAGE

Nodes
LUTs FFs DSPs BRAMs

(53200) (106400) (220) (240)
Usage Percentage Usage Percentage Usage Percentage Usage Percentage

Stage1 37,029 69.60% 55,938 52.57% 196 89.09% 74.50 53.21%
Stage2 37,433 70.36% 64,991 61.08% 219 99.55% 122 87.14%
Stage2 1 36,246 68.13% 64,966 61.06% 219 99.55% 121 86.43%
Stage2 2 37,453 70.40% 64,957 61.05% 219 99.55% 136 97.14%
Stage3 35,466 66.67% 60,477 56.84% 200 100% 119 85%
Stage4 33,071 62.16% 62,746 58.97% 219 99.55% 133 95%
Stage5 34,053 64.01% 61,240 57.56% 219 99.55% 119.50 85.36%
Stage3 4 5 36,845 69.26% 63,583 69.26% 135 61.36% 121.50 86.79%

of all the implemented hardware stages, apart from Stage1 and
Stage3 4 5, all the other implementations use almost 100%
of the available DSPs. The frequency at which the system runs
is always 100MHz, with the exception of the Convolutinoal
Core., which is set to run at a higher frequency, because,
in the other case, due to the time-sharing mechanism, the
Convolutional Core would become the slowest element since it
takes, by design, a new input every clock enable clock cycles.
In all the stages the Convolutional Core frequency was indeed
increased, apart from Stage3 4 5 in which timing was not met
due to the high number of components placed in the design,
as shown in Table II and Table III. Theoretically, also the
Max-Pooling Core should be clocked at higher frequencies
since it is a simplified version of the Convolutional Core.
However, in the first two convolutional stages the filter sizes
of the Convolutional Core is bigger than in pooling and in the
remaining stages, for each set of concurrent feature map in
output the BiasAdd Relu and Requantization Core has to wait
for three complete iterations to get the final results; hence,
there is no need to increase the pooling frequency.

D. End-to-End Time

On a single PYNQ-Z1 node, since the different convo-
lutional stages of the network are executed in a sequential
manner, the execution time is given by summing up the
single execution times since there is no data transfer. The
ARM implementation computes every candidate region layer
by layer, therefore, it would take 18 minutes and 26 sec-
onds on average, computed as (218.12ms + 353.85ms +
365.08ms+ 214.95ms+ 321.16ms+ 227.70ms)× 650. On
the other hand, the ARM-FPGA implementation average time
necessary to compute all the candidate regions is obtained
as (14.89ms + 41.44ms + 61.56ms) × 650 + 300ms × 3,
which corresponds to 1 minute and 18 seconds. The first
three times represent the actual hardware computation time,
additional latency is added due to the fact that hardware
buffers have to be retrieved from DDR since they are not
cached, while 300ms represent the average reconfiguration
time. Therefore, the obtained FPGA speed-up on the single
PYNQ-Z1 implementation amounts to 14.7×.

Looking to the distributed ARM-FPGA system, thanks to
the double buffering technique, to the synchronous non-
blocking communication and to the pipelined structure, every
9.36ms a candidate region output is ready. Differently, the
ARM computation produces an output every 369.22ms. This
means that every 6.08 seconds and 4 minutes, respectively, an
image is fully analyzed. In this configuration, the ARM-FPGA
implementation achieves a 39.5× of speed-up with respect to
the ARM one. When comparing the GPU implementation, in
which a single candidate region takes 0.76ms, being it the sum
of its stage execution, to our distributed ARM-FPGA system,
GPU reaches a 12.2× speedup.

E. Power Consumption and Energy Efficiency

Taking as reference the computation of one input image
from which 825 candidate regions have been extracted, the ex-
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TABLE VII
POWER CONSUMPTIONS

GPU ARM ARM-FPGA

Single Distributed Single Distributed

Run Time [s] 1.104 1,403 304.606 98.159 7.722
Power Max [W] 205 4.2 24.8 3.7 22.2

Energy Per Image [J] 226 5,891 7,554 363 171

perimental results regarding power consumption are presented
in Table VII. As can be noted, the ARM implementations
of both single PYNQ-Z1 and the distributed system are not
efficient since they have greater execution times as well as
higher power consumption with respect to the corresponding
ARM-FPGA implementation. Indeed, the single PYNQ-Z1
ARM-FPGA implementation obtains 16.2× of energy effi-
ciency with respect to the ARM counterpart, while, on the
distributed design, the ARM-FPGA implementation guarantees
a 44× of energy efficiency. If real-time execution is not a
constraint, for example, if the images have to be analyzed for
an advertisement analysis, the distributed ARM-FPGA system
would be the best choice. When comparing our best implemen-
tation, represented by the embedded ARM-FPGA distributed
system, to the GPU implementation, only 1.3× is obtained
for energy efficiency; however, the energy measured for the
distributed ARM-FPGA system includes all the components
on the PYNQ-Z1 board (which could be excluded when
realizing a custom board for the market), while the GPU
energy consumption accounts for the GPU and CPU only.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we introduced design guidelines to accelerate a
FD CNN to a distributed, embedded system and implemented a
working prototype on the PYNQ-Z1 platform. The distributed
system reaches a speed-up of 39.5× in terms of a single image
while guaranteeing to be 44× energy-efficient with respect
to the concurrent fully optimized software implementation.
On the single PYNQ-Z1 system, a 14.3× of speed-up has
been obtained, along with an energy efficiency of 16.2×. We
obtained a 99% of accuracy on face/non-face class binary
scores average errors on the scale of 10−3, thus they can
be considered irrelevant when comparing with floating point
results.

As a continuation of this work, several aspects can be
improved. The first aspect is the mapping of the FPGA stages
to the nodes, which can be automated via a scheduler that
would also cope with failures and changing workloads, like the
feature classifiers of the original HyperFace. Another aspect is
the node power consumption, which can be better controlled
by turning off unneeded resources and by better integration
with Linux, in order to decrease the CPU frequency when
the FPGA is active. Finally, the quantization phase can be
automated and possibly fully integrated with available tools
like TensorFlow.
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