
1

FIDA: a framework to automatically integrate
FPGA kernels within Data-Science applications

L. Stornaiuolo, A. Parravicini, D. Sciuto, M. D. Santambrogio
Politecnico di Milano, Milan, Italy
alberto.parravicini@mail.polimi.it,

{luca.stornaiuolo, donatella.sciuto, marco.santambrogio}@polimi.it

Abstract—Hardware accelerators are an effective solution to
increase the performance of algorithms in a wide array of
disciplines, from data science to computational finance. However,
data scientists and mathematicians often do not have the required
knowledge or time to fully exploit these accelerators, and they
perceive them as difficult and frustrating to use. OpenCL was
created to simplify the creation of computational pipelines with
heterogeneous hardware, but as of today its integration with
high level languages commonly used in data science is limited.
In this paper, we propose a framework to integrate OpenCL
kernels running on Field Programmable Gate Arrays (FPGAs)
with Python, R and MATLAB, the most common languages used
in data science. Our framework can automatically generate all
the interfaces needed to wrap an OpenCL kernel into these high
level languages, and provide the user with a transparent access
to the kernel itself.

I. INTRODUCTION

Heterogeneous System Architectures (HSAs) are being seen
with more and more interest, as the computational pipelines
used in fields such as data science and computational finance
demand high performance, low latency and low power con-
sumption.

To meet these requirements, many different tools and
hardware solutions have been proposed by academia and
industry[1]. Among the available solutions, FPGAs can be
configured to provide high parallelism and throughput, but
can be difficult and cumbersome to program. FPGA vendors
such as Xilinx have been trying to lower the barrier to access
to hardware acceleration. These companies provide tools that
allow the user to accelerate their algorithms by writing com-
putational kernels in C, and make available libraries of kernels
that have already been built for their systems.

As an example, Xilinx SDx simplifies FPGA programming
by providing PCI-Express (PCIe) drivers and an OpenCL
runtime that the host-side software can leverage to control
the hardware accelerator. However, fully integrating FPGA
kernels in the computational pipelines can be a tedious and
error-prone task, due to the large number of steps required to
connect these kernels to high level languages such as Python,
R and MATLAB which are popular amongst data scientists.

Starting from our previous work [2], we propose a frame-
work that aims at fully automatizing the integration of FPGA
kernels into Python, R and MATLAB, starting from a simple
description of the inputs and outputs of the kernel.

Compared to our previous results, we leverage Xilinx SDx
to produce the PCIe drivers required to connect the FPGA
to the host system, and we extend the framework to include
Python and MATLAB.

More in detail, we present the following contributions:
• The automatic generation of the OpenCL host file that

controls an FPGA kernel to be integrated (Section III).
• The automatic generation of the interfaces that trans-

parently connect the OpenCL host to Python, R and
MATLAB.

• How to leverage our framework in order to minimize
the computational overhead in the overall pipeline (Sec-
tion IV).

II. RELATED WORK

The fields of data science and computational finance are
characterized by strict performance requirements. It is often
demanded to minimize the execution times and at the same
time to provide consistent latency. The innate parallelism of
the computational tasks performed in these fields guided the
users towards architectures such as Graphic Processing Unit
(GPU) and FPGA.

To easily leverage these architectures, different frameworks
have been proposed. GPUs have been widely adopted in scien-
tific computing since the introduction of CUDA by NVIDIA
[3]. Thanks to their performance in data parallel tasks, GPUs
have been quickly integrated in libraries and programming
languages in a way that is fully transparent to the users. As
an example, MATLAB seamlessly supports GPU acceleration
by using gpuArrays()[4], and Python offers similar capabilities
using PyCUDA[5].

FPGA vendors have been trying to provide a similar level
of abstraction, by exploiting the OpenCL framework in the
programming of computational kernels and of the host soft-
ware [6]. Moreover, there exist already wrappers of OpenCL
written for Python [7], R [8] and even MATLAB [9]. All these
wrappers, however, have a different syntax, and still rely on
the user to write a large amount of boilerplate code to control
the accelerator.

Other recent work have been focused on the integration
of Domain Specific Languages (DSLs) with FPGAs [10], by
building a common backend which enables the DSL compiler
to target FPGA architectures. This approach is different from
ours as it operates directly on the Abstract Syntax Tree of

2

the code, instead of wrapping an existing OpenCL kernel.
The advantage of our framework is that it can be applied
to different architectures with minimal effort, and it is not
inherently limited to FPGAs.

Python R MATLAB

Unified FIFO Interface

OpenCL Host File

FPGA

PCIe

Output
FIFO

Input
FIFO

MEXRcppBoost

Fig. 1. Scheme of the proposed framework. The upper box represents the high
level language module, while the lower box represents the OpenCL/FPGA
module. The two modules are connected by using FIFO buffers.

III. PROPOSED APPROACH

The main goal of our framework is to enable a user to
automatically generate the interfaces of an OpenCL kernel to
the most common high level languages used in data science.
We focused on Python, R and MATLAB, which are often the
languages of choice of data scientist, quantitative analysts and
computational statisticians [11].

From a description of the inputs and outputs of the kernel
(Listing 1), in terms of structure (scalar or array) and type (int,
float, etc. . .), our framework is able to automatically generate
all the interfaces required to connect the kernel to the high
level languages.

We focused on FPGA C/C++ kernels written following
the OpenCL paradigm, optimized through Vivado HLS, and
compiled with the OpenCL compiler provided within the
Xilinx SDAccel workflow. The framework also works with
kernels written in Hardware Description Language (HDL) like
Verilog and VHDL, or with the Xilinx OpenCL libraries.

Moreover, the framework can wrap kernels that behave as
black-boxes, and for which only the input/output specifics are
known (which is usually the case for kernels that are sold
commercially). A strong point of our work is that it can
be used to interface kernels that run either on CPUs, GPUs
and FPGAs making it highly flexible to many different HSA
systems.

Listing 1. Example of kernel description
{
"kernel_name": "mmult",
"board": ["xilinx_adm-pcie-7v3_1ddr_3_0"],
"xclbin": ["kernel_7v3.xclbin"],
"num_iterations": 3,
"inputs": [

{"type": "array",
"name": "a",
"length": 256,
"class": "int",
"position": 0},

{"type": "array",
"name": "b",
"length":256,
"class": "int",
"position": 1}],

"outputs": [

{"type": "array",
"name": "c",
"length":256,
"class": "int",
"position": 2}]

}

The structure of the framework can be divided in two main
modules (Figure 1). The first module represents the OpenCL
host interface, the software that controls the accelerator and
the kernel itself. The second module is used to connect the
high level languages to the host interface, by using language
specific libraries and tools. The two modules are connected by
a streaming interface based on named pipes, created in linux
through mkfifo.

A. Low-Level Module

The low-level module of our framework is composed by the
computational kernel which is wrapped in the user application,
and by an OpenCL host file that manages the kernel. The
kernel is compiled through an OpenCL compiler, and all the
platforms supported by the OpenCL standard can be used. The
input/output specifics of the kernel are described with a small
configuration file, that is used by the framework to build the
interfaces.

The OpenCL runtime provided by the host file configures
and manages the FPGA, and launches the kernel whenever
the required data are available. The host file is unique and
independent from the high level language chosen by the user,
and it requires recompilation only if the target accelerator or
the target kernel are changed.

B. High-Level Module

The high-level module gives the user the ability to call the
OpenCL kernel directly from Python, R or MATLAB, without
having to manually configure the FPGA or handling the data
transfer. The upper portion of the module is used to convert
the data of a given high-level languages to the types and
data structures that can be processed by OpenCL and by the

3

FPGA kernel. This is accomplished by making use of different
libraries, depending on the language that is considered.

In the case of Python, we make use of the Boost.Python[12]
library, which allows to wrap C/C++ function and classes
in modules that can be imported and invoked from Python.
The structure of the module itself is independent from
the target kernel, but arrays have to be converted from
boost::python::list to standard C arrays before being
sent to the OpenCL host.

R allows to compile and execute C++ functions through
the Rcpp package [13], and invoke them like traditional R
functions. As in the case of Python, R data-types must be
converted to regular C/C++ types (e.g. arrays of integers
become IntegerVectors), both when sending and receiving data
from the FPGA. The conversion is handled by R’s C interface
[14], which casts the subtypes of defined R data type to default
C++ types.

In MATLAB, the interface with C is implemented through
MEX files [15]. MEX files are dynamically linked subroutines
executed by MATLAB as if they were built-in functions.
MATLAB is optimized to work on floating point numbers and
doesn’t offer full support to integer numbers. However, we can
cast floating point numbers to integers if the OpenCL kernel
demands so.

These modules converts the data to the appropriate data
types, and then call a language-independent function that is
connected to the OpenCL by the named pipes. This function
will send and receive the data through the named pipes.

The two modules are connected by using named pipes. Our
framework uses one input and one output pipe, which are
created and managed by the OpenCL host. After completing
the FPGA reconfiguration, the host waits for data to be sent by
an application on the input pipe, and will return the results on
the output pipe. If desired, the user can require the host to run
in a server-like mode, meaning that the host will remain active
after having processed the data, so that new data can be sent
and processed. This optimization allows to mask the FPGA
reconfiguration time, and drastically reduce the execution time
overheads for a kernel that is repeatedly invoked by the user
application.

IV. EXPERIMENTAL EVALUATION

To analyze the impact of our framework on the performance
of a computational pipeline, we have conducted several tests.
Our focus was mainly on measuring the overheads of the
data-type casting and data transfer that are introduced by our
framework, and to understand which part of the interface has
the highest impact. The overall execution time of an OpenCL
kernel wrapped with our framework can be decomposed into
several steps, for which we have measured the relative impact.
More specifically, we considered the time required to program
the FPGA, the time required to convert the input (and output)
from the data-types used by the high level languages to the
types used by OpenCL, the time used to send the data through
the named pipes, the time used to transfer the data from the
host machine memory to the FPGA memory, and finally the
time taken by the FPGA computation itself.

We have consider two simple OpenCL kernels which are
used in numerous disciplines and which can benefit from
FPGA acceleration.

A. Integer Matrix Multiplication

We implemented a 16×16 integer matrix product, in which
the matrices are sent to the kernel as one-dimensional buffers
and multiplied by taking advantage of hardware pipelining.
The input matrices are sent to the kernel through the input
named pipe, and the output matrix is retrieved through the
output named pipe.

B. Variance

The variance of an input signal is computed in an extremely
efficient way by the FPGA, through hardware pipelining and
tree reductions to perform multiply-and-accumulate operations
in a single clock cycle. By also introducing parallel reads
from the input, the main computation can be performed in a
number of cycles lower than the input size, not counting the
cycles needed to transfer the signal to the FPGA memory.
The input signal was a 10000-long float vector.

We have tested the framework using a Xilinx Virtex-7 FPGA
connected through PCIe. The FPGA was mounted on a host
machine which contains an Intel i7 870 CPU at 2.93GHz and
8GB of RAM. The host machine was also used to compare the
execution times of the FPGA with respect to using the CPU
exclusively.

We measured the execution times of both kernels using the
interfaces in three high level languages that we support, and
compared our results with the execution time obtained by the
respective built-in functions.

It is possible to see (Figure 2) that the R interface performs
sightly faster, while Python and MATLAB have similar ex-
ecution times. The overhead, due to data-types casting and
input/output transfer plays a significant cost in the overall
execution time.

To get a better understanding of the overhead of each step in
the pipeline we decomposed the overall execution time into the
individual steps that are present in the framework (Figure 3).
We measure the time from the start of the input transfer to the
end of the output transfer, thus including the overhead added
by our interface. As the board can be programmed before
starting the computation and kept running waiting for data
to be processed, we measured the executions times without
considering the FPGA reconfiguration time. This analysis was
done for both of the OpenCL kernel we tested, as they have
different input types and sizes. We can see how transferring
data from the application to the host using named pipes
has a significant time cost, while the actual kernel execution
is extremely fast. As a consequence, it might preferable to
accelerate kernels in which the computation plays a significant
cost, compared to the data transfer.

V. CONCLUSIONS

In this paper we have proposed a framework to facilitate
the integration of OpenCL kernels into computational pipelines

4

mmult var
Kernel

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ex
ec

ut
io

n
tim

e
[m

s]

Interfaces Overheads
Kernel Execution Time
Python Overhead

MATLAB Overhead
R Overhead

Fig. 2. Execution time of the mmult and variance kernels, with highlighted
the overheads of the interfaces in each supported language.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Execution time [ms]

mmult

var

Ke
rn

el

Time distribution

Interface Overhead
FPGA Data Transfer
FPGA Execution
FIFO output

Fig. 3. Time subdivision across the different steps of the computation. The
times considered are taken from the Python interface.

written in common high level languages such as Python, R and
MATLAB, by providing the automatic creation of interfaces
that take care of data conversion, data transfer and of the
runtime management of the kernel. At the moment the over-
head introduced by our framework prevent the acceleration of
kernels that do not have a significant execution time, but this
issue could be removed by using shared memory to transfer
data between the user application and the host.

We believe that our work can trivially be extended to support
GPUs and other hardware accelerators, to provide even higher
flexibility to the users. Moreover, we would like to deploy our
solution on the AmazonWeb Services (AWS) EC2 F1 compute

instances, which support high-end FPGAs and would allow the
users to accelerate their computation without the need to own
and install an FPGA.

Another extension that we plan to implement is to support
OpenCL hosts that can run multiple kernels in the same
pipeline, as long as the board does have enough resources,
in order to reduce the reconfiguration time overheads.

REFERENCES

[1] K. H. Tsoi and W. Luk, “Axel: a heterogeneous cluster with fpgas and
gpus,” in Proceedings of the 18th annual ACM/SIGDA international
symposium on Field programmable gate arrays. ACM, 2010, pp. 115–
124.

[2] L. Stornaiuolo, A. Parravicini, G. Durelli, and M. Santambrogio,
“Exploiting fpgas from higher level languages a signal analysis case
study,” in Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2017 IEEE International. IEEE, 2017, pp. 132–140.

[3] NVIDIA, “CUDA Parallel Computing Platform.” [Online]. Available:
http://www.nvidia.com/object/cuda home new.html

[4] MathWorks, “Parallel Computing Toolbox.” [Online]. Available:
http://mathworks.com/products/parallel-computing/

[5] Nvidia, “PyCUDA.” [Online]. Available: https://developer.nvidia.com/
pycuda

[6] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in science
& engineering, vol. 12, no. 3, pp. 66–73, 2010.

[7] A. Klöckner, “Pycuda: Even simpler gpu programming with python.”
[8] S. Urbanek, “Opencl: Interface allowing r to use opencl.”
[9] J. Radford, “Opencl toolbox v0.17.” [On-

line]. Available: https://it.mathworks.com/matlabcentral/fileexchange/
30109-opencl-toolbox-v0-17

[10] E. Del Sozzo, R. Baghdadi, S. Amarasinghe, and M. D. Santambrogio,
“A common backend for hardware acceleration on fpga,” in 2017 IEEE
35th International Conference on Computer Design (ICCD). IEEE,
2017, pp. 427–430.

[11] J.-F. Puget, “The most popular language for machine learning and data
science is” [Online]. Available: https://www.kdnuggets.com/2017/
01/most-popular-language-machine-learning-data-science.html

[12] D. Abrahams and R. W. Grosse-Kunstleve, “Building hybrid systems
with boost. python,” CC Plus Plus Users Journal, vol. 21, no. 7, pp.
29–36, 2003.

[13] C. R-project, “Rcpp: Seamless R and C++ Integration.” [Online].
Available: https://cran.r-project.org/web/packages/Rcpp/index.html

[14] A. R. by Hadley Wickham, “R’s C interface.” [Online]. Available:
http://adv-r.had.co.nz/C-interface.html

[15] MathWorks, “Mex file creation api.” [Online]. Available: https:
//it.mathworks.com/help/matlab/call-mex-files-1.html

