
Exploiting FPGAs from Higher Level Languages

A signal analysis case study
L. Stornaiuolo, A. Parravicini, G. Durelli, M. D. Santambrogio

Politecnico di Milano, DEIB, Italy

{luca.stornaiuolo, alberto.parravicini}@mail.polimi.it

{gianlucacarlo.durelli, marco.santambrogio}@polimi.it

Abstract—Field Programmable Gate Arrays (FPGAs) are
usually perceived as difficult to exploit due to the High Level of
expertise required to program them. In the last years, the major
FPGAs vendors have produced different High Level Synthesis
(HLS) tools to help programmers during the flow of acceleration
of their algorithms through the hardware architecture. However,
these tools often use languages considered low level from the
point of view of data scientists and are still much too difficult to
use for software developers. This complexity limits their usage
in a number of fields, from data science to signal processing,
where the computational power offered by FPGAs could be
highly beneficial. One way to overcome this problem is to
realize libraries of widely used algorithms that transparently
offload the computation to the FPGAs device from modern High
Level Languages. Our work presents an interface between R, a
language commonly used by statisticians and data scientists, and
an FPGA connected via PCI-Express (PCIe). We use the Reusable
Integration Framework for FPGA Accelerators (RIFFA) to send
and receive data from PCIe connection. To showcase the use of the
described interface and the improvements given by making use
of FPGAs in signal analysis applications we used Xilinx Vivado
Design Suite to implement an accelerated and optimized version
of the Autocorrelation Function (ACF) present in the default
libraries used by R.

I. INTRODUCTION

The interest for data-mining, machine learning and signal
analysis has been growing steadily with the need of tools that
can process large data, at higher and higher speeds. The natural
consequence has been a shift from traditional architectures,
to High-Performance Computing (HPC) [1] systems with an
increasingly high amount of parallelism. However, exploiting
these architectures to accelerate applications is a long and hard
process that requires time to learn appropriate techniques to
get advantages from the hardware and to prototype and test
different implementations. Because of these reasons many data
scientists still use old tools and libraries of sequential algo-
rithms. In this paper, we consider as Higher Level Languages
those programming languages with strong abstractions in the
context of data science and signal analysis. In these languages,
the users can use the algorithms they need simply by importing
the needed libraries, without a deep knowledge of software
design. Examples of these languages are Python, MATLAB
and R.

Modern tools aim at bridging the gap between simplicity
and performance. They allow users to remain in the com-
fort of Higher Level Languages while taking advantage of
the parallelism of hardware architectures. Nowadays, Graphic
Processing Units (GPUs) are the most popular choice for
improving the performance of data analysis. This is due to
a combination of multiple factors, such as their availability

and the strong investments made by NVIDIA to promote
the parallel computing platform CUDA [2]. The result is
a robust support to the most widely used libraries in data
analysis and computational sciences, and a strong integration
with the most used Higher Level Languages. The interest
of data scientists towards Field Programmable Gate Arrays
(FPGAs) has recently spiked, due to the computational power,
the performance per watt and the reconfigurable flexibility [3]
offered by these architectures. These properties allow also the
usage of the FPGAs to realize embedded systems without
involving any other device [4]. However, they are still seen
by many as obscure and hard to program, which results in a
low amount of applications being ported to these platforms.

Even though Computer-Aided Design (CAD) tools to target
FPGAs are improving, there is still a gap between the solutions
provided by these CAD tools and the needs of data scientists.
Over the last years, in fact, High Level Synthesis (HLS)
tools allowed to rapidly develop IP cores and accelerators
starting from C code or other languages instead of writing
pure Hardware Description Language (HDL) code; however
the result of this process still need to be integrated at system
level and a set of libraries needs to be written to be ready to
use by data scientists.

The topic of this work is to illustrate a first prototype,
using a case study from signal analysis, of an architecture and
libraries to integrate a FPGA in the context of a language
commonly used by data scientist such as R. In particular, we
will illustrate:

• how the Autocorrelation Function (ACF) algorithm has
been implemented for FPGA using Vivado HLS and how
it has been optimized to improve its performance;

• how the IP core has been integrated at System On Chip
(SOC) level to allow communication with the host system
running R;

• how the IP core can be then exploited within the R flow;

Our results will show that such implementation improves over
the implementation of the ACF function available in the R
library.

The paper is organized as follows. Section II describes
some of the works related to the one of this paper and clarifies
the context of the proposed solution. Section III presents the
case study and its analysis. Section IV illustrates how the an-
alyzed algorithm have been implemented on the target FPGA.
Section V describes how we performed system level integra-
tion, realizing an HW architecture able to communicate over
PCI express with the host system; then Section VI illustrates
how the realized architecture can be exploited from Higher

Level Languages. The results are presented in Section VII.
Finally, Section VIII draws the conclusions and present future
directions of work.

II. RELATED WORKS

The need of using alternative solutions to standard Central
Processing Unit (CPU) and multicore architectures in the
field of data science and signal processing is caused by the
availability of unprecedented amount of data to process [5]
that allows for an efficient exploitation of highly parallel ar-
chitectures such as GPUs and FPGAs. Both these architectures
can be configured to perform Single Instruction Multiple Data
computation [6] to accelerate the processing of a large amount
of data; however FPGAs can also exploit instruction level
parallelism if the designer realizes computational pipelines and
such approach can also allow to hide data transfer latency.

GPUs started to be used for scientific computation since
NVIDIA released the CUDA framework [2]. Thanks to this
framework, general purpose computation can be executed
on GPU, while they were used only for graphic processing
before. Higher Level Languages rapidly began to exploit this
capability by realizing libraries to efficiently exploiting GPU
almost without the user being aware of it. For example, a wide
range of MATLAB functions can be transparently executed on
the GPU; the user has only to create the input data calling
a specific function (called gpuArray()) that allocates data
inside of the GPU DDR memory instead of the CPU one.
In other languages as Python libraries such as PyCUDA have
been released for the same purpose [7].

For FPGAs instead such level of abstraction is still not
available and FPGAs are not exploited in scientific computing
except for rare situations where ad hoc solutions have been
realized [8]. Often the FPGA-based accelerator is interfaced
with the CPU through a host function, written in C/C++,
that sends data to the FPGA device and receives back results
[9, 10]. This is also the way to interface an FPGA accelerator
that exploits the OpenCL standard [11, 12]. One of the aims of
this paper is to communicate with the host function transpar-
ently from the user application. In general, every Higher Level
Language has the possibility to connect to external libraries
and languages by providing specific libraries for converting its
internal objects to the ones of the target library or languages.
This is the case for MATLAB with the MEX files [13, 14],
for Python with Boost-Python [15], and R with Rcpp [16].
These solutions, or similar ones, are the starting point when a
Higher Level Language has to be extended to support external
libraries and components as we did in this paper. Moreover,
it is possible to connect different Higher Level Languages to
the same host function and exploit the build once re-use many
times paradigm simply by creating a specific interface for each
language to be connected.

However, the benefits of FPGAs for scientific algorithms
have been demonstrated multiple times by works implementing
accelerators for different problems. One example is the data
mining field, where, over the last years, multiple works have
proposed FPGA solutions to the implementation of clustering
algorithms. As an example, an implementation of a K-Means
algorithm has been proposed in [17], while [18] presents a
solution for DBSCAN. The implementation of the Autocor-
relation Function (ACF) of the R library proposed in this

paper aims to illustrate how it is possible to take advantages
from the exploitation of FPGA by illustrating some techniques
commonly used for this purpose. Some related works about
Crosscorrelation Function are proposed in [19, 20], but they
use different variants of the algorithm to achieve different
results.

In the context of simplifying the development of IP cores
and the runtime for FPGAs in general, a solution that is gaining
traction over the last years is the possibility to target FPGA
by starting from the OpenCL language [21]. This solution
is the one adopted by Xilinx with SDAccel tool [22, 23].
Our solution is an initial prototype of a hardware system that
resembles the one supported by SDAccel framework, with the
advantage that we are not restricted by the need for another
tool and design flow, as it is the one in SDAccel, and we can
rely on the standard flow used in Xilinx Vivado tool suite.
Furthermore, SDAccel support is limited to a small range of
devices, while the solution proposed here potentially supports
all the devices for which RIFFA is available, which means
that the classic development board available in the research
community will be easily supported.

III. CASE STUDY: AUTOCORRELATION FUNCTION

We decided to use as case study for this work an algo-
rithm from the signal processing field: the ACF algorithm.
This algorithm is not only important per se, but it is also
a building block of other algorithms such as the Principal
Component Analysis or in general algorithms that perform
dimensionality reduction on datasets by selecting only the
most relevant/descriptive features. This section presents the
definition of the algorithm, as well as the description of its
implementation in R, the analysis of its complexity obtained
with an initial profiling phase and some consideration of why
this algorithm is suitable for being accelerated on FPGA

A. Definition

Given two univariate random processes X , Y , with values
x1, x2, ..., xn, y1, y2, ..., yn over a time-span 1, ..., n, and de-
fined a lag τ , the empirical (or sample) Correlation Function
(CF) ρ̂X,Y (τ) is defined as:

ρ̂X,Y (τ) =

∑n−τ

i=1
(xi − x̄0)(yi+τ − ȳτ)

√

∑n−τ

i=1
(xi − x̄0)2

√

∑n−τ

i=1
(yi+τ − ȳτ)2

with x̄0 = 1

n−τ

∑n−τ

i=1
xi and ȳτ = 1

n−τ

∑n

i=τ+1
yi, the

sample means of X and Y over interval n− τ . By changing
the value of τ , we model the empirical CF of the processes
X and Y , which shows the correlation between the processes
at various times. The CF shows the degree of similarity of
process X with process Y , shifted by a value τ . If process X
is equal to process Y , we get the empirical Autocorrelation
Function (ACF) of Y, that represents the internal similarities
of the process with itself. Under the hypothesis of equispaced
observations, one can replace X with Y in the above formula
to compute the ACF values of Y and have information about
the randomness of the process. This helps to identify an ap-
propriate time series model (if several lag values are analyzed)
[24].

B. R Implementation

The default ACF implementation, present in R libraries
as part of package stats, processes the input signal into the
main routine written in R and then calls a subroutine written
in C that computes and returns the final ACF values. The
main parameters are a process Y with values y1, y2, ..., yn
over a time-span 1, ..., n (defined as a univariate or multivariate
time series or a numeric vector or a matrix) and the desired
maximum lag (lag max).

The R implementation of the function is composed of two
steps. In the first one R creates the input data to be used for
the C subroutine. In this first step R creates a time series from
the input Y and it computes the sample mean ȳ of Y as:

ȳ =
1

n

n
∑

i=1

yi

After this, it replaces values of Y with their depolarized value:

ŷi = yi − ȳ ∀ i ∈ [1, n]

At this point the C subroutine is invoked.

The C subroutine does the following steps:

1) for each lag τ ∈ [0, lag max] it computes the corre-
sponding Sample Autocovariance Function γ̂(τ) of the
input time series (obtained using the normalization by n
instead of n− |τ |):

γ̂Y (τ) =
1

n

n−τ
∑

i=1

(yi − ȳ)(yi+τ − ȳ) =
1

n

n−τ
∑

i=1

(ŷi ŷi+τ)

2) for each lag τ ∈ [0, lag max] it computes the corre-
sponding Sample ACF r̂(τ) of the input time series:

r̂Y (τ) =
γ̂Y (τ)

γ̂Y (0)
=

∑n−τ

i=1
(ŷi ŷi+τ)

∑n

i=1
(ŷi)2

3) it returns the corresponding ACF r̂Y (τ) vector obtained

C. Profiling

We characterized R implementation of ACF over multi-
variate signals with increasing number of samples and di-
mensions, and reported the overall performances of the al-
gorithm, in terms of execution time and quantity of memory
allocated/deallocated. To visualize the profiling results we used
Profvis a tool available from GitHub [25]. Profvis samples the
state of the function call stack, by stopping the R interpreter
at fixed time intervals (by default, every 10ms). Since R
sampling profiler [26] results for each execution could be
slightly different from one to another, we have executed the
same profiling test functions multiple times and we have
reported the average of the results. Tests have been executed
on a Notebook with Intel Core i7-4710HQ CPU (2.50 GHz /
3.50 GHz, 4 core, 6 MB CACHE L3) and 4 GB DDR3L-1600
RAM (3,89 GB usable). To have a meaningful representation
of how the performances of the algorithm scale with respect to
the size of the data-set, we set changed value of lag max from
the default value: lag max = 10 · log10(nPts/nDim) with
nPts being the number of samples and nDim the number of
dimensions of the input signals, to: lag max = (nPts/2)

0

10

20

30

40

50

1e+05 2e+05 3e+05

Number of points of the input signal

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
ec

]

ACF − univariate signal

Fig. 1. Profiling results of ACF on CPU for univariate signals in terms of
execution time. The increase in time complexity is quadratic with respect to
the data-set size.

0.0

0.5

1.0

1.5

1e+05 2e+05 3e+05

Number of points of the input signal

M
e

m
o

ry
 a

llo
c
a

te
d

 a
n

d
 d

e
a

llo
c
a

te
d

 [
M

B
]

ACF − univariate signal

Allocated Memory

Deallocated Memory

Fig. 2. Profiling results of ACF on CPU for univariate signals in terms of
quantity of memory allocated/deallocated.

Using about half of the data-set size as maximum lag is a
reasonable hypothesis, if the number of samples is consider-
able, as in our case. Figure 1 and Figure 2 show the average
results for univariate signal with a number of observations
ranging from 50K to 300K. The increase in time complexity is
quadratic with respect to the dataset size. Figure 3 and Figure 4
show the average results on a dataset with a fixed amount of
points (30K), and an increasing number of dimensions (from 1
to 10). Once again, the scaling of execution time is quadratic.

By inspecting the source code, we can compute the arith-
metic intensity of the algorithm. We considered the number of
memory accesses to floating point values, and the number of
sums and multiplications performed on floating point values.
Note: n is the number of points of the input signal, p is the
number of dimensions, with N = n · p, L is the maximum
lag considered in the computation. The input of the algorithm
will have approximatively size N , its output will have size
p2 ·L. The number of floating point memory accesses will be
about Lp2(3 + 6n) + Lp2 + p which can be asymptotically
rewritten as 6Lp2n. The number of sums is Lp2n + 2Lp2

approximatively equal to Lp2n. The number of multiplications
is Lp2(1 + n) + 2Lp2, i.e. Lp2n. Note that we considered of

0

20

40

2.5 5.0 7.5 10.0

Number of dimensions of the input signal

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
ec

]

ACF − multivariate signal (30K points per dimension)

Fig. 3. Profiling results of ACF on CPU for multivariate signals in terms of
execution time. The increase in time complexity is quadratic with respect to
the data-set size.

0

1

2

2.5 5.0 7.5 10.0
Number of dimensions of the input signal

M
em

or
y

al
lo

ca
te

d
an

d
de

al
lo

ca
te

d
[M

B]

ACF − multivariate signal (30000 points per dimension)

Allocated Memory

Deallocated Memory

Fig. 4. Profiling results of ACF on CPU for multivariate signals in terms of
quantity of memory allocated/deallocated.

equivalent complexity multiplications and divisions. p square
roots are also performed: their number is, however, negligible
compared to the ones of the other operations. As a result, the
ratio between floating point operations (FLOPs) and memory
accesses is:

FLOPs

Memory accesses
=

Lp2n+ Lp2n

6Lp2n
=

1

3
= O(1)

while the arithmetical intensity, defined as ratio between the
number of floating point operations and the input size is:

FLOPs

InputSize
=

Lp2n+ Lp2n

np
≈ Lp

If the maximum lag L is considerable, with an order similar
to the number of points n, the arithmetical intensity becomes

Lp ≈ np = N

From the results we obtained, it seems possible to improve the
performances of ACF in a number of ways:

• Dimensionality scaling: in an n-dimensional signal, the
computation of the correlation function between two of
its dimensions is fully independent of the computation

AXI

Stream

AXI

Stream

ACF

Core

AXI

Stream
DMA

DMA

DMA

Fig. 5. Interface of the realized HW accelerator

of the correlation functions of other dimensions. As a
consequence, it is possible to evaluate in parallel the
different correlation functions of the different components
of the signal.

• Lag: taken the ACF of a univariate signal, the values of
this function can also be computed independently from
one to another. As an example, the value of the ACF
r̂Y (τ = 0) can be computed separately from r̂Y (τ = 1).

• Points: in a given correlation function, for each value of
lag, it is necessary to compute many vector products of the
time series that compose the signal; the vector product is
well suited to be accelerated in a number of ways, such
as by making use of pipelined architectures or systolic
arrays.

IV. HARDWARE ACCELERATOR

In this work we focused on the acceleration of the ACF
of univariate signals. The solution presented here can be
trivially extended to support multivariate signals, but this is not
generally useful in practice. To support multivariate signals,
it would suffice to re-use multiple times our implementation,
with different signals as input. However, we believed more
valuable to focus our efforts on optimizing as much as possible
the base case of ACF and to put aside these extensions.

The first design challenge is that we need to take care
on how our core accesses to the input data. In fact, the R
implementation has the possibility to access each point of the
signal from the host DDR using any stride and type of access
with almost no loss in performance due to host cache and pre-
caching mechanisms. However on FPGAs random access to
DDR on board is a costly operation that can take hundreds of
clock cycles. For this reason, to achieve low memory access
latencies, it is required to use registers (in the form of LUTs,
look-up tables) and Block RAM (BRAM), which, however, are
available in limited quantities. It is, in fact, possible to store a
reasonable amount of data on the FPGA DDR (from 512MB
to a few GB), if needed, but IP Cores can only access BRAMs
and registers efficiently which can store data in the order of
KB or at most MB.

However, if we look at the data access pattern of our ACF
we can see that data is accessed sequentially from memory.
Thanks to this, we can design our core to be able to accept
data from a streaming interface, so that we do not need to
store the whole input signal into local BRAM, but the core
can simply access the data from the input streams when new
data is needed. A controller is then needed to feed the input
streams of the core with the data in the correct order. Being the
access sequential, such controller can simply by a DMA which
is instructed to copy data from one location to the input stream.
Our implementation of the ACF needs 2 input streams, one for

࢔࢟ … ૛࢟ ࢔࢟૚࢟ … ࢞�࢓�−࢔࢟ … ૛࢟ ૚࢟ …

…

… i

0 … 0 ࢔࢟ … ࢞�࢓�+૚࢟ ૚+ i࢟ ૛+ i࢟ … ࢔࢟
Accumulator

෍௝=1
௡௨௠௣௢௜௡௧௦ �݊ͳ௝ ∙ �݊ ௝ʹ
for t in [0, ݈ܽ݃_݉ܽ�]

ʹ��࡯࡭ ∙ ሺ݈ܽ݃_݉ܽ� ∙ ሻݏݐ݊�݋݌_݉ݑ݊

݈ܽ݃_݉ܽ�

ݏݐ݊�݋݌_݉ݑ݊ ݏݐ݊�݋݌_݉ݑ݊
0 … 0

Fig. 6. Schema of the first FPGA implementation of the ACF.

the original signal, and one for the lagged one, and an output
stream for collecting the output data, this structure defines the
interface of our core, as presented in Figure 5. The streams are
32 bits wide to accommodate float data which is the datatype
used for implementation. Vivado HLS easily allows to define
streams and to define the protocol used to communicate with
the external component by means of #pragma directives. We
configured the core to use the standard AXI Stream protocol
to communicate with Xilinx DMA cores that will be used to
feed data to the core.

After defining the core interface we now describe how
we implemented the computation of the ACF. At first, we
focused on using as little resources as possible inside the IP
Core, by exploiting a stream of input data with an appropriate
structure: the idea is that to compute the i-th point of the
ACF, we need to multiply each point of the signal with
the other points, shifted by i. To do so without having to
store the entire signal, or all the values of the ACF, inside
the IP Core, we used the 2 input streams in the following
way: one contains the signal (with size num points), and
another contains the signal shifted by an amount i. After
reading the entire signal, we can output the ith value of the
ACF. This process is repeated lag max times, the desired
length of the output. Overall, we need to pass to the IP Cores
(2 ·num points · lag max) values, as it is shown in Figure 6.
By using hardware pipelining, it is possible to mask the cost if
expensive multiply-and-accumulate operations, and read from
the streams at every clock cycle. This implementation of the
algorithm requires about (num points · lag max) operations,
and its time complexity can be approximated to O(n2), while
its spatial complexity is O(1). Unfortunately, having to read
(2·num points·lag max) becomes extremely expensive even
for signals of moderate length: as an example, computing the
ACF of a signal of size 50K with a lag max of 25K, and a
clock frequency of 100MHz, would require:

50K · 25K

100 · 106
= 12.5

seconds, while in R this computation would take about 1.5
seconds.

It is clear that to achieve high performances it isn’t enough
to take advantage of hardware parallelism, but it is required to
lower the amount of data transferred from the main memory.
To do so, we decided to add two local buffers inside our
IP Core, to store a small portion of the input signal and
reduce the input streams size of a factor B (the local buffer
size). The idea is that the product of a point xi and the

࢔࢟ … ࢔࢟૛࢟ … ࢞�࢓�−࢔࢟ … ૚࢟ …

…

࡮࢞�࢓_��࢒ … i

0 … 0 ࢔࢟ … ૚+࢞�࢓�∙࡮࢟ 0 … ૚+ i+࡮࢟

࡮+��࡯࡭ … ૚+��࡯࡭ ��࡯࡭

࡮࢙�࢘ … ૚࢙�࢘ ૙࢙�࢘
i +࡮࢟ … ૛+ i࢟ ૚+ i࢟

B

ሺܤ − ͳሻ ∙ ܤ�ܽ݉_݈݃ܽ + ͳ + ʹ ∙ ݏݐ݊�݋݌_݉ݑ݊ ∙ ܤ�ܽ݉_݈݃ܽ + ͳ

∗
+

ሺܤ − ͳሻ …

݁݉�ݐ ݋ݐ ݐ�݊� ℎ݁ݐ ݈ܽܿ݋݈ ݎ݂݂݁ݑܾ + ݁݉�ݐ ݋ݐ ݁ݐݑ݌݉݋ܿ �ܥܣ ݏ݁ݑ݈ܽݒ
ݏݐ݊�݋݌_݉ݑ݊

࢔࢟ 0…

Fig. 7. Schema of the final FPGA implementation of the ACF.

points in the range [xi+lag, ..., xi+lag+B] will be used to
compute the ACF values in the range [lag, ..., lag +B]. To
compute the value of ACF at position lag, with lag in the
range [1, ..., lag max], we need to multiply and accumulate
every point in the original signal and in the signal shifted
by a value lag. By using a local buffer that behaves as a
shift register, it is possible to compute B values of ACF in
parallel; their partial values are stored in the second local
buffer, and are written to the output stream only when every
pair {xi, xi+lag} has been read from the streams. The input
streams can be considered divided into blocks: each block has
size num points and allows to compute the ACF values in
the range [1, ..., lag max]. The number of blocks is equal
to lag max/B. The blocks in the first input stream contain
the full signal. The blocks in the second input stream contain
the signal shifted by B · block number. Figure 7 shows the
delay caused by the initialization of the shift register at the
beginning of each block. Once again, by employing hardware
pipelining and loop unrolling, we were able to mask the latency
of multiply-and-accumulate operations. The number of oper-
ations done by the algorithm is still num points · lag max,
approximated to quadratic time complexity O(n2), but now it
is required to have two buffers of size B (which is still a O(1)
spatial complexity). However, as many operations are done in
parallel, the execution time of the algorithm is proportional
to the input streams size: the local buffers reduce the stream
size by a factor B, which in turn reduces the complexity of
the algorithm by the same factor. Our reference board, the
Xilinx VC707, supported buffers of size 200, partitioned into
blocks of size 50 so that it is possible to access 50 data
in parallel realizing a SIMD architecture. Being able to use
bigger local buffers should lead to even higher performance
improvements. Moreover, our implementation can be easily
scaled with respect to the available resources on the board,
by changing the local buffer size and its partitioning factor,
which can be easily done customizing C code given as input
to Vivado HLS.

V. SYSTEM INTEGRATION

After realizing the IP core, we need to perform the system
integration phase to realize an HW architecture which allows
us to use the realized accelerator from the host system. The
solution proposed in this section is a first prototype of a
system that can be used from a host device to perform the
computation. The features that have to be made available by
the HW architectures are: (i) the possibility to exchange data

Design Clock (200 MHz)PCIe Clock

(125MHz)

D
D

R

H
o

s
t

FPGA

PCIe

Core

(RIFFA)

FIFO

FIFO

FIFO

FIFO

Microblaze

PCIe <-> DDR

Datawidth

Converter

Datawidth

Converter

M
IG

ACF

Core

DMA

DMA

DMA

M
e

m
o

ry

In
te

rc
o

n
n

e
c

tAXI

Interconnect

128

Bits

32

Bits

512

Bits

External

Component

Xilinx

Component

Our

Component

Fig. 8. HW Infrastructure to support communication with host.

via PCI-Express (PCIe) connection, (ii) the possibility to store
data on DDR on board, (iii) the possibility to easily manage
the allocation into the DDR memory, and (iv) the ability to
control the HW accelerator in the design. Figure 8 illustrates
the system we realized for satisfying the four points just
mentioned.

The PCIe interface has been managed by using RIFFA, an
open source solution from UCSD [27]. This solution, which
is made available as pure Verilog, has been packaged in a
Xilinx IP core and extended with the possibility to expose
standard AXI Stream interfaces instead of the proprietary
interface exposed by the original RIFFA core. The part of the
design enclosing PCIe runs at 125MHz taking the clock from
the PCIe slot, while the remaining of the system runs at the
reference frequency generated by the MIG controller, which is
the DDR controller made available by Xilinx. This reference
frequency can be configured by the user, we used 200MHz
in our design. In between these two clock domains we placed
FIFO components both because we need buffering to store
data coming from PCIe and because the Xilinx Data Stream
FIFO component can be configured to act as a clock domain
crossing component allowing the synchronization of the two
asynchronous clocks present in the design.

The design allows data movement over PCIe to and from
the DDR available on the board. Such data movement is pos-
sible thanks to a component we wrote in HLS that takes/writes
data from/to the AXI Stream connections exposed by RIFFA
and communicates with the MIG over an AXI Master connec-
tion. This core, thanks to the AXI Master interface, is able to
issue read and write commands to the DDR and perform data
movements. The core has also an AXI Slave configuration port
where a controller can pass parameters such as the number of
512 bits words to move and the initial memory address. Upon
receiving the start command the cores perform a sequential
read or write from the provided initial memory address for the
desired number of words. Core’s inputs and outputs are 512
bits width since this datawidth allows to reach a high memory
bandwidth; we measured a peak bandwidth of 11.7 GB/s on
our Xilinx VC707 board.

The last two requirements, i.e. the possibility to easily per-
form memory management inside the FPGA and the possibility
to control the HW core are possible thanks to a Microblaze
instantiated in the design. The Microblaze communicates with
the host system via PCIe, in fact, one AXI Stream coming
from the RIFFA core is directly connected to the Microblaze

stream interface. The Microblaze can then receive 128 bits
instructions (in 4 32 bits words) from the host. Among these
instructions, there are the request to allocate and deallocate
a given number of bytes on DDR on-board (MALLOC and
FREE). Upon receiving the command the Microblaze performs
a malloc() or free() call and returns the result of the operation
to the host, which now is aware of which part of the DDR is
ready to be used for the computation. After allocating memory
regions inside the FPGA the host can copy move data to/from
the device by sending the Microblaze the proper instruction
(DDR WRITE or DDR READ) and communicating the initial
address and the number of bytes. The Microblaze takes care of
configuring the core we implemented for moving data across
PCIe to perform the requested operation. At this point, the host
can check when the transfer is done with another instruction
(CHECK TRANSFER DONE). Finally, the host can control
the ACF core by issuing the RUN CORE command and
passing the needed parameters.

VI. INTEGRATION WITH R

The goal of building an interface between Higher Level
Languages, such as R, Python and MATLAB, and an FPGA is
to provide the user with algorithms that can be called like any
other function. These algorithms will transparently make use
of an FPGA implementation if certain criteria are met. As an
example, when working with data of small size it might not be
worth to use an FPGA, as the communication overheads would
nullify any gain achieved by using hardware acceleration; in
this case, the algorithm would fall back to a traditional CPU
implementation. The user would still have to configure its
FPGA appropriately (in terms of programming it with the right
IP Core), but no specific knowledge of the board hardware and
interfaces is required to use the algorithms from Higher Level
Languages.

Generally, Higher Level Languages expose the possibility
to call routines written in a more efficient and fast language
such as C or C++. This is the case for Python, MATLAB and
R. Boost-Python [15] is available to perform this operation and
allows to easily move between Python and C++ NumPy [28]
arrays which are the main datatype for a renowned Python
mathematical library. Analogously in MATLAB one can use
MEX files [13] to perform this MATLAB to C communication.
The language target of this work, R, is no different from the
other two and allows to connect R and C++ using the Rcpp
package [16]. Rcpp allows to compile C/C++ code and build
functions that can be called from R as if they were regular R
functions. As R uses its own data types (e.g. arrays of floats
use the class NumericVector) we have to convert the passed
variable to standard C++ arrays before passing them to the
FPGA, and vice-versa when returning the results to R. The
conversion is handled by the R’s C interface [29] which allows
to cast the subtypes of defined SEXP data type to default C++
data types or R data types.

The passage from R to C++ is necessary, not only because
C++ is faster than R in performing control operations, but also
because RIFFA components do not directly expose drivers for
R language, while it does for C. Once the data is ready on
the C++ side, we can proceed with the communication with
the FPGA exploiting the architecture presented in the previous

TABLE I. RESOURCE UTILIZATION BREAKDOWN AMONG DIFFERENT

COMPONENTS OF THE PROPOSED ARCHITECTURE.

Component LUTs FFs BRAMs 18K DSPs

MIG 13568 15035 3 0

RIFFA 50409 65888 387 0

Microblaze 1749 2103 12 0

FIFOs 860 1523 229 0

Datawidth Converters 401 1564 0 0

Interconnects 8577 10463 160 0

DMAs 2395 3137 15 0

PCIe - DDR 1557 3707 0 0

ACF 83678 113458 0 503

section. In particular, for our case study the process happens
in 5 steps:

1) Issuing of 2 MALLOC commands to reserve 2 memory
regions inside the FPGA; one for the input time series
and one for the ACF results;

2) Sending of a DDR WRITE command to move input data
onto the FPGA;

3) Running the computation via the RUN CORE command;
4) Reading results back to the host using the DDR READ

command;
5) Releasing the memory regions allocated in the first step

issuing 2 FREE commands.

Once these operations are completed the data is passed back
to R by the Rcpp interface.

VII. RESULTS

This section presents the evaluation of this work by analyz-
ing at first the resource usage of the devised HW architecture
and then comparing the results of the proposed solution with
the original R implementation.

Our solution has been implemented on a Xilinx VC707
board mounting a Xilinx Virtex7 xc7v456ff157-1 FPGA. This
FPGA has been connected by means of a PCIe Gen2 connec-
tion to a host with an Intel Xeon W3530. The software solution
has been tested on an Intel i7-4710HQ.

A. Resource Utilization

Table I reports a utilization breakdown of the different
components in the HW architecture we designed. Looking at
numbers we can see that the ACF core is the one using the
most of the resources, but still the remaining of the design,
which is used only for handling communication with the host,
still occupies a relevant amount of resources. By the synthesis
reports, we saw that the HW infrastructure, without the ACF
core, uses: 26% of LUTs, 33% of FFs, and 39% of BRAMs.
Most of the resource usage of the infrastructure is caused by
RIFFA and the FIFOs used to buffer the data exchanged over
PCIe. At the moment this is a limiting factor of our solution
since it constrains a number of resources that can be used by
the computational IP core. These numbers are still similar with
a number of resources that are used by similar solutions, such
as SDAccel [22, 23].

B. Performance

For evaluating the performance of our solution, we com-
pared the results obtained implementing the ACF algorithm on

the Xilinx VC707 board and the corresponding results obtained
via native R library. Note that for signals with a low number
of points the latency of transfer data through the PCIe can
represent a bottleneck, so it results more convenient executing
the computation on the CPU. To avoid these marginal cases,
we analyzed signals with a number of points greater or equal
to 50K, which is a reasonable number in the context of
data science and signal analysis. The tests were performed
using univariate signals with increasing number of points,
ranging from 50K to 1M . The maximum lag considered,
which coincides with the number of points of the ACF that
were computed, is half of the number of points of the signal.
From the results in Figure 9 it can be immediately seen
that the FPGA massively outperforms the CPU as the signal
size becomes bigger and bigger. To precisely quantify the
improvements of our implementation over the default R one,
we can compute the speedup, defined as:

Speedup = (
T imeCPU

T imeFPGA

− 1) · 100

In Figure 10 it can be seen how the speedup grows very
quickly up to about 300K points, then it slows down. This
can be explained considering the overheads caused by the
data transfer to the IP Core, that becomes negligible for large
signals. Moreover, the ability to compute more lags in parallel
can only reduce the complexity by a constant factor: this can
be seen on large signals, for which the speedup value is almost
constant with respect to the size of the input.

It should be noted that the speedup curve doesn’t reach
a stationary value in our analysis. As we know that the
complexity of the considered algorithms is quadratic with
respect to the number of points in the input, we performed
a polynomial regression (of order 2) over the CPU and FPGA
execution times and computed the speedup of the predicted
execution times. In Figure 11 it can be seen that the speedup
stops increasing with signals of more than 5 million points,
with a theoretical speedup value of 700%. We also included

0

200

400

600

5
0
K

7
7
K

1
0

5
K

1
3

3
K

1
6

1
K

1
8

8
K

2
1

6
K

2
4

4
K

2
7

2
K

3
0

0
K

4
0

0
K

5
0

0
K

6
0

0
K

7
0

0
K

8
0

0
K

9
0

0
K

1
M

Number of points

E
xe

c
u

ti
o

n
 t

im
e

 [
s
e

c
]

CPU

FPGA (VC707)

ACF, execution time of FPGA (VC707) and CPU

Fig. 9. Execution time of ACF tests for univariate signal with increasing
number of points, on a Virtex-7 and on a CPU. The FPGA massively
outperforms the CPU as the signal size becomes bigger and bigger.

100

200

300

400

500

600

5
0
K

7
7
K

1
0

5
K

1
3

3
K

1
6

1
K

1
8

8
K

2
1

6
K

2
4

4
K

2
7

2
K

3
0

0
K

4
0

0
K

5
0

0
K

6
0

0
K

7
0

0
K

8
0

0
K

9
0

0
K

1
M

Number of points

S
p

e
e

d
u

p
 P

e
rc

e
n

ta
g

e
ACF, Speedup of FPGA (VC707) over CPU

Fig. 10. Speedup percentage of a Virtex-7 over a CPU for a univariate
signal with increasing number of points. The speedup grows very quickly up
to about 300K points, then it slows down due to the overheads caused by
the data transfer and the ability to compute a fixed number of ACF values in
parallel.

100

200

300

400

500

600

700

800

0 2,5M 5M 7,5M 10M
Number of points

S
p

e
e

d
u

p
 P

e
rc

e
n

ta
g

e

Predicted

No

Yes

Speedup prediction, up to 10000000 points

Fig. 11. Speedup prediction of a Virtex-7 over a CPU for univariate signal
with increasing number of points. The speedup curve reach a stationary value
with signals of more than 5 million points, with a theoretical speedup value
of 700%.

the real speedup values for signals with 2M and 3M points,
for comparison.

VIII. CONCLUSIONS

In this paper we presented how it is possible to exploit
an FPGA to obtain accelerated version of algorithms that are
widely used in the context of data science and signal analysis.
As a case study, we accelerated a software implementation
of the Autocorrelation Function (ACF) present in the default
libraries of the R language. Furthermore, we presented how the
realized accelerator can be integrated into a HW architecture
that communicates with a host system via PCIe and allows

the usage of the accelerator from a Higher Level Language.
The solution presented in this work allows for the usage of
the realized accelerator from the R language transparently to
the final user which has simply to invoke the proper function
to execute its analysis (ACF in our example) on the HW
accelerator.

Future works will focus on multiple aspects. One of them
will be the support of a wider range of algorithms and
the development of the corresponding accelerators and the
corresponding interfaces for Higher Level Languages. We will
also broaden the support of languages including, for instance,
MATLAB and Python. In doing these extensions we might
also need to further abstract and revisit the interface with the
HW system to be able to control different HW cores via the
same interface. Furthermore, we also want to investigate two
aspects on the HW side, the first one is the support of other
PCIe interfaces as the one directly provided by Xilinx in the
new versions of Vivado tools. Finally, we need to allow the HW
to perform partial reconfiguration of the IP core performing the
computation to allow the possibility to run different algorithms
on the FPGA.

ACKNOWLEDGMENT

This work was supported by the European Commission in
the context of the H2020 FETHPC EXTRA project (#671653).

REFERENCES

[1] K. H. Tsoi and W. Luk, “Axel: a heterogeneous cluster with
fpgas and gpus,” in Proceedings of the 18th annual ACM/SIGDA
international symposium on Field programmable gate arrays.
ACM, 2010, pp. 115–124.

[2] NVIDIA Corporation, “Cuda parallel computing platform.”
[Online]. Available: http://www.nvidia.com/object/cuda home
new.html

[3] F. Ferrandi, M. Novati, M. Morandi, M. D. Santambrogio,
and D. Sciuto, “Dynamic reconfiguration: Core relocation via
partial bitstreams filtering with minimal overhead,” in 2006
International Symposium on System-on-Chip, Nov 2006, pp. 1–
4.

[4] V. Rana, M. Santambrogio, and D. Sciuto, “Dynamic recon-
figurability in embedded system design,” in 2007 IEEE Inter-
national Symposium on Circuits and Systems, May 2007, pp.
2734–2737.

[5] N. Marz and J. Warren, Big Data: Principles and best practices
of scalable realtime data systems. Manning Publications Co.,
2015.

[6] M. J. Flynn, “Some computer organizations and their effective-
ness,” IEEE transactions on computers, vol. 100, no. 9, pp. 948–
960, 1972.

[7] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and
A. Fasih, “Pycuda and pyopencl: A scripting-based approach
to gpu run-time code generation,” Parallel Computing, vol. 38,
no. 3, pp. 157–174, 2012.

[8] M. Baity-Jesi, R. Baos, A. Cruz, L. Fernandez, J. Gil-Narvion
et al., An FPGA-based supercomputer for statistical physics:
The weird case of Janus. Springer New York, 3 2014, pp.
481–506.

[9] A. Parashar, M. Adler, M. Pellauer, and J. Emer, “Hybrid
cpu/fpga performance models,” in 3rd Workshop on Architec-
tural Research Prototyping (WARP 2008), 2008.

[10] M. D. Santambrogio, H. Hoffmann, J. Eastep, and A. Agar-
wal, “Enabling technologies for self-aware adaptive systems,”

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html

in 2010 NASA/ESA Conference on Adaptive Hardware and
Systems, June 2010, pp. 149–156.

[11] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman,
M. Kinsner, D. Neto, J. Wong, P. Yiannacouras, and D. P.
Singh, “From opencl to high-performance hardware on fpgas,”
in Field Programmable Logic and Applications (FPL), 2012
22nd International Conference on. IEEE, 2012, pp. 531–534.

[12] Intel, “Intel fpga sdk for opencl.” [On-
line]. Available: https://www.altera.com/en US/pdfs/literature/
hb/opencl-sdk/aocl getting started.pdf

[13] MathWorks, “Introducing mex files.” [Online]. Avail-
able: https://it.mathworks.com/help/matlab/matlab external/
introducing-mex-files.html

[14] ——, “Mex file creation api.” [Online]. Available: https:
//it.mathworks.com/help/matlab/call-mex-files-1.html

[15] D. Abrahams and R. W. Grosse-Kunstleve, “Building hybrid
systems with boost. python,” CC Plus Plus Users Journal,
vol. 21, no. 7, pp. 29–36, 2003.

[16] CRAN, “Rcpp: Seamless r and c++ integration.” [Online]. Avail-
able: https://cran.r-project.org/web/packages/Rcpp/index.html

[17] H. M. Hussain, K. Benkrid, A. T. Erdogan, and H. Seker,
“Highly parameterized k-means clustering on fpgas: Compar-
ative results with gpps and gpus,” in Reconfigurable Computing
and FPGAs (ReConFig), 2011 International Conference on.
IEEE, 2011, pp. 475–480.

[18] N. Scicluna and C.-S. Bouganis, “Fpga-based parallel dbscan
architecture,” in International Symposium on Applied Reconfig-
urable Computing. Springer, 2014, pp. 1–12.

[19] X. Wang and X. Wang, “Fpga based parallel architectures
for normalized cross-correlation,” in 2009 First International
Conference on Information Science and Engineering, Dec 2009,
pp. 225–229.

[20] B. Miao, R. Zane, and D. Maksimovic, “A modified cross-

correlation method for system identification of power converters
with digital control,” in 2004 IEEE 35th Annual Power Electron-
ics Specialists Conference (IEEE Cat. No.04CH37551), vol. 5,
June 2004, pp. 3728–3733 Vol.5.

[21] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel
programming standard for heterogeneous computing systems,”
Computing in science & engineering, vol. 12, no. 3, pp. 66–73,
2010.

[22] J. Fifield, R. Keryell, H. Ratigner, H. Styles, and J. Wu,
“Optimizing opencl applications on xilinx fpga,” in Proceedings
of the 4th International Workshop on OpenCL. ACM, 2016,
p. 5.

[23] G. Guidi, E. Reggiani, L. Di Tucci, G. Durelli, M. Blott, and
M. D. Santambrogio, “On how to improve fpga-based systems
design productivity via sdaccel,” in Parallel and Distributed
Processing Symposium Workshops, 2016 IEEE International.
IEEE, 2016, pp. 247–252.

[24] NIST/SEMATECH, “e-handbook of statistical methods.”
[Online]. Available: http://www.itl.nist.gov/div898/handbook/
eda/section3/eda35c.htm

[25] Winston Chang, “Profvis.” [Online]. Available: https://github.
com/rstudio/profvis

[26] ——, “Profvis intro.” [Online]. Available: https://rpubs.com/
wch/123888

[27] M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “Riffa
2.1: A reusable integration framework for fpga accelerators,”
ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 8, no. 4, p. 22, 2015.

[28] S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The numpy ar-
ray: a structure for efficient numerical computation,” Computing
in Science & Engineering, vol. 13, no. 2, pp. 22–30, 2011.

[29] Advanced R by Hadley Wickham, “Rs c interface.” [Online].
Available: http://adv-r.had.co.nz/C-interface.html

https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_getting_started.pdf
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_getting_started.pdf
https://it.mathworks.com/help/matlab/matlab_external/introducing-mex-files.html
https://it.mathworks.com/help/matlab/matlab_external/introducing-mex-files.html
https://it.mathworks.com/help/matlab/call-mex-files-1.html
https://it.mathworks.com/help/matlab/call-mex-files-1.html
https://cran.r-project.org/web/packages/Rcpp/index.html
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35c.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35c.htm
https://github.com/rstudio/profvis
https://github.com/rstudio/profvis
https://rpubs.com/wch/123888
https://rpubs.com/wch/123888
http://adv-r.had.co.nz/C-interface.html

	Introduction
	Related works
	Case Study: Autocorrelation Function
	Definition
	R Implementation
	Profiling

	Hardware Accelerator
	System Integration
	Integration with R
	Results
	Resource Utilization
	Performance

	Conclusions

