
HLS Support for Polymorphic Parallel Memories
L. Stornaiuolo*, M. Rabozzi*, D. Sciuto*, M. D. Santambrogio*, G. Stramondo+, C. Ciobanu+, A. L. Varbanescu+

*Politecnico di Milano, Milan, Italy; +Universiteit van Amsterdam, Amsterdam, Netherlands
{luca.stornaiuolo, marco.rabozzi, donatella.sciuto, marco.santambrogio}@polimi.it

{g.stramondo, c.b.ciobanu, a.l.varbanescu}@uva.nl

Abstract—The importance of High-Level Languages in abstract-
ing machine language to enhance productivity has been proved
in many sectors, and has recently encouraged the spread of
reconfigurable hardware for general purpose computing. At the
same time, Field Programmable Gate Arrays (FPGAs) become
popular for data-intensive applications, because they promise
customized hardware accelerators and achieve high-performance
with low power consumption. However, taking advantage of par-
allel accesses to the local memories of FPGAs remains difficult,
as it currently requires application re-engineering. A solution to
this challenge is PolyMem, an easy-to-use parallel memory. In
this work, we investigate the implementation, integration, and
performance of PolyMem for HLS applications. To this end,
we present a novel open-source implementation of PolyMem,
optimized for the Xilinx Design Suite. We further demonstrate
the use of PolyMem for three different case studies, implemented
using both the Vivado workflow with a Virtex-7 VC707, and the
SDx workflow with a Kintex Ultrascale 3 ADM-PCIE. Finally,
we provide a thorough empirical analysis of these three cases
studies in terms of latency, hardware resources, and productivity.
Our results demonstrate that PolyMem delivers the expected
performance, while enhancing productivity at the cost of a small
increase in resources.

I. INTRODUCTION

The success of High-Level Languages (HLLs) for non-
traditional computing systems, like Graphics Processing Units
(GPUs) and Field Programmable Gate Arrays (FPGAs), have
accelerated the adoption of these platforms for general purpose
computing. In particular, the main hardware vendors released
tools and frameworks to support their products by allowing
the design of optimized kernels using HLLs. This is the case,
for example, for Xilinx, which allows using C++ or OpenCL
within the Vivado Design Suite [1] to target FPGAs.
Moreover, FPGAs are increasingly used for data-intensive

applications, because they enable users to create custom hard-
ware accelerators, and achieve high-performance implemen-
tations with low power consumption. However, one aspect
still lagging behind is the efficient use of BRAMs, the FPGA
distributed, high-bandwidth, on-chip memories [2]. BRAMs
can provide memory-system parallelism, but their use remains
challenging due to the many different ways in which data
can be partitioned in order to achieve efficient parallel data
accesses. Changing data access patterns on the application side
is the current state-of-the-art approach, which does parallelize
operations and reduces the kernel execution time, but also
requires extensive modification of the application code.
To address the challenges related to the design and practical

use of parallel memory systems for FPGA-based applica-

tions, PolyMem, a Polymorphic Parallel Memory, was pro-
posed [3]. PolyMem is envisioned as a high-bandwidth, two-
dimensional (2D) memory used to cache performance-critical
data on the FPGA chip, making use of the existing distributed
memory banks (the BRAMs). PolyMem is inspired by the
Polymorphic Register File (PRF) [4], a runtime customizable
register file for Single Instruction, Multiple Data (SIMD) co-
processors. PolyMem is tailored for FPGA accelerators which
require high bandwidth, even if they do not implement full-
blown SIMD co-processors on the reconfigurable fabric.
The first hardware implementation of the Polymorphic Regis-

ter File was designed in System Verilog [5]. MAX-PolyMem is
the first prototype of PolyMem written entirely in MaxJ, and
targeted at Maxeler DFEs [6], [7]. Our new HLS PolyMemis
an alternative HLL solution, proven to be easily integrated
with the Xilinx toolchains.
Figure 1 depicts the envisioned system architecture. The

FPGA board (with a high-capacity DRAM memory), is con-
nected to the host CPU through a PCI Express link. Poly-
Mem acts as a high-bandwidth, 2D parallel software cache,
able to feed an on-chip application kernel with multiple data
elements every clock cycle. The focus of this work is to
provide an efficient implementation of PolyMem in Vivado
HLS, and employ it to maximize memory-accesses parallelism
by exploiting BRAMs; we empirically demonstrate the gains
we get from PolyMem by comparison against the partitioning
of BRAMs, as provided by Xilinx tools, for three case-studies.

PCI-E

FPGA Board

Host

PolyMem

Kernel

DRAM

FPGA Chip

Fig. 1. System organization using PolyMem as a parallel cache.

Specifically, the main contributions of this paper are:
1) A novel, open-source implementation1 of PolyMem for

Vivado HLS, that allows its integration within the Xilinx
Hardware-Software Co-Design Workflow;

2) Optimizations of the previously proposed PolyMem in-
terface by adding masked methods to avoid overwrites
and reduce latency;

3) Comparisons in terms of performance, resource-
utilization, and productivity, of HLS PolyMem against
standard memory partitioning techniques for three
case-studies.

1https://github.com/storna/hls prf978-1-5386-4756-1/18/$31.00 c©2018 European Union

II. BACKGROUND

A. The PRF and PolyMem

A PRF is a parameterizable register file, which can be
logically reorganized by the programmer or a runtime system
to support multiple register dimensions and sizes simulta-
neously [4]. The simultaneous support for multiple conflict-
free access patterns, called multiview, is crucial, providing
flexibility and improved performance for target applications.
The polymorphism aspect refers to the support for adjusting
the sizes and shapes of the registers at runtime. Table I presents
the PRF multiview schemes (ReRo, ReCo, RoCo and ReTr),
each supporting a combination of at least two conflict-free
access patterns. A scheme is used to store data within the
memory banks of the PRF, such that it allows different parallel
access types. The different access types refer to the actual data
elements that can be accessed in parallel.

TABLE I
THE PRF MEMORY ACCESS SCHEMES

PRF Schemes Available Access Types
ReO Rectangle
ReRo Rectangle, Row, Main/Secondary Diagonals
ReCo Rectangle, Column, Main/Secondary Diagonals
RoCo Row, Column, Rectangle
ReTr Rectangle, Transposed Rectangle

PolyMem reuses the PRF conflict-free parallel storage tech-
niques and patterns, as well as the polymorphism idea. Fig-
ure 2 illustrates the set of access patterns supported by the PRF
and, ultimately, by PolyMem. In this example, a 2D logical
address space of 8× 9 elements contains 10 memory Regions
(R), each with different size and location: matrix, transposed
matrix, row, column, main and secondary diagonals. Assuming
a hardware implementation with eight memory banks, each of
these regions can be read using one (R1-R9) or several (R0)
parallel accesses.

R2

R0
0

4

R1R5

R3
R6

7

2

3

5

7

80

R7

5

R9

R4

R8

Fig. 2. PolyMem supported access patterns

By design, the PRF optimizes the memory throughput for a
set of predefined memory access patterns. For PolyMem, we
consider p × q memory modules and the five parallel access
schemes presented in Table I. Each scheme supports dense,
conflict-free access to p · q elements. When implemented in
reconfigurable technology, PolyMem allows application-driven
customization: its capacity, number of read/write ports, and the
number of lanes to best support the application needs.
The block diagram in Figure 3 shows, at high level, the

PEF architecture. The multi-bank memory is composed of
a bi-dimensional matrix containing p × q memory modules.
This enables parallel access to p · q elements in one memory

96 CHAPTER 5. POLYMORPHIC RF IMPLEMENTATION RESULTS

Read Data Shuffle

M02 M03

M10 M11 M12

M00 M01

M13

Read Address Shuffle

AGU (i + r, j + t)

A(i + r, j + t)

m(i + r, j + t)

i j Access Type

Address

Data

D
e

la
y

PRF Data Out

(a) Standard Addressing Read

Write Data Shuffle

M02 M03

M10 M11 M12

M00 M01

M13

A(ci, cj)

AGU (i + r, j + t)

ci, cj

m(i + r, j + t)

i j Access Type

Address

Data

i j Access Type

PRF Data In

(b) Customized Addressing Write

Read / Write Data Shuffle

M02 M03

M10 M11 M12

M00 M01

M13

AGU - compute i + r, j + t

m(i + r, j + t)

i j Access Type

Address

Data

R
e

a
d

 D
e

la
y

i
j

A
cc

e
ss

 T
y

p
e

ci, cj (i, j, Access Type) & A(ci, cj)

PRF Data In/Out

(c) Superimposed Read / Write Stan-
dard and Customized Addressing

Figure 5.2: PRF block diagrams, 8 lanes, p=2, q=4

block which is being read (i and j), and the shape of the block (Access Type).
The data output (PRF Data Out) consists of 8 elements. The AGU computes
the individual coordinates of all the data elements which are accessed and for-
wards them to the Module Assignment and the intra-module Addressing func-

Fig. 3. Block diagram of the PRF [4]. The inputs are the matrix
indexes (i, j) pointing to the first cell of the block of data the user
wants to read/write in parallel, and the AccessType to compute the
other addresses to point the right PRF banks of memory.

operation. The inputs of the PRF are shown at the top of the
diagram. AccessType represents the parallel access pattern.
The indexes (i, j) are the top-left coordinate of the parallel
accesses. The list of elements to access is generated by the
AGU module and is sent to the A module and to the m module.
The A module generates one in-memory address for each
memory bank in the PRF; the m module, applies the mapping
function relative to the implemented scheme and computes
for each accessed element the respective memory bank where
it is stored. The Data Shuffle block reorders the addresses,
generated by the m module, to the respective memory banks,
then reorder the Data In/Out ensuring that the user of the PRF
obtains the accessed data in their original order.

B. Matrix storage in a parallel memory

Figure 4 compares two ways for a 6×6 matrix to be mapped
in BRAMs to enable parallel accesses. Thus, the default
Vivado HLS partitioning techniques with a factor of 3 is
compared against a PolyMem with 3 memory banks, organized
exploiting the PolyMem RoCo scheme. The memory banks, in
this case, are organized in a 1× 3 structure, allowing parallel
access to rows and columns of three, eventually unaligned,
elements. The left side of the Figure shows an example of a
matrix that the user wishes to store on partitioned BRAMs to
achieve hardware parallelism in data reads/writes. The right
side illustrates the techniques used to partition the matrix.
Taking two random, unaligned, parallel accesses of 3 elements
and using a RoCo scheme, starting respectively from the cells
contain elements 8 and 23, it is possible to see that each
element of each access type is mapped within PolyMem on
a different memory bank. Hence, with one memory operation
performed in parallel on each different memory bank, it is
possible to read/write 3 elements in parallel. This small-scale

example is included for visualization purposes only. Real-
applications are like to use more memory banks, allowing
parallel accesses to larger data blocks.

III. IMPLEMENTATION DETAILS

This section describes the main components of our Poly-
Mem implementation for Vivado HLS. The goal of integrating
PolyMemin the Xilinx workflow is to provide users with an
easy-to-use solution to exploit parallelism when accessing data
stored on the on-chip memory with different patterns.
Our Vivado HLS PolyMem implementation exploits one of

the five schemes, the RoCo, to store on the BRAMs of the
FPGA the data required to perform the application operations.
Compared to the default Vivado memory partitioning tech-
niques, which allow hardware parallelism in one dimension
without consuming too many hardware resources, a Poly-
Mem configured with the RoCo scheme can manage two
types of access patterns simultaneously.
We implemented a template-based class prf that exploits

loop unrolling to parallelize memory accesses. When the
HLS PolyMem is instantiated within the user application code,
it is possible to specify PRF DATA T , i.e., the type of data
to be stored, the (p× q) number of internal banks of memory
(which also represents the level of parallelism), the (N ×M)
dimension of the matrix to be stored (also used to compute
the depth of each bank of data), and the scheme to organize
data within the different banks of memory.
In Listing 1 the interfaces of methods that allow accesses

to data stored within PolyMem are presented. Simple read
and write methods use the m and A functions to compute,
respectively, the address and the depth of the bank of memory
in which the required data is stored or needs to be saved. On
the other hand, the read block and the write block exploit
optimized versions of m and A to read/write (q ·p) elements in
parallel, while limiting the hardware resources used to reorder
data. Finally, we optimized the memory access operations
by implementing a write block masked method to specify
which data in the block has to be overwritten within PolyMem.
As an example, this method is useful when PolyMem supports
a wide parallel access (e.g., 8 elements), but the user has
less data to be stored (e.g., 5 elements), and wants avoid
overwriting existing data (e.g., the remaining 3 elements).

Listing 1. List of the methods interfaces to allow user read/write data by
used sequential or parallel accesses

PRF_DATA_T read(int i, int j);
void write(PRF_DATA_T data, int i, int j);
void read_block(int i, int j, PRF_DATA_T out[p * q],

int PRF_ACCESS_TYPE);
void write_block(PRF_DATA_T in[p * q], int i, int j,

int PRF_ACCESS_TYPE);
void write_block_masked(PRF_DATA_T in[p * q],

ap_uint<p * q> mask,
int i, int j,
int PRF_ACCESS_TYPE);

IV. EXPERIMENTAL EVALUATION

In this section, we propose three applications (i.e., matrix
multiplication, Markov chain, and LU decomposition) that

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1
4
9

12
14
17
19
22
27
30
32
35

2
5
7

10
15
18
20
23
25
28
33
36

3
6
8

11
13
16
21
24
26
29
31
34

1
2
3
4
5
6

19
20
21
22
23
24

7
8
9

10
11
12
25
26
27
28
29
30

13
14
15
16
17
18
31
32
33
34
35
36

1
4
7

10
13
16
19
22
25
28
31
34

2
5
8

11
14
17
20
23
26
29
32
35

3
6
9

12
15
18
21
24
27
30
33
36

Input Matrix

HLS Array
Partitioning

Block

HLS Array
Partitioning

Cyclic
PolyMem

Fig. 4. Comparison between different partitioning techniques offered
by Vivado HLS (factor = 3) and the RoCo scheme of PolyMem, with
3 memory banks, for data stored in a 6x6 matrix. PolyMem allows
3 parallel data reads/writes, from the rows and the columns of the
original matrix. Unaligned blocks are also supported.

exploit our HLS PolyMem to parallelize accesses to matrix
data by using the RoCo scheme. Each application demon-
strates different features of our HLS PolyMem. In the ma-
trix multiplication case-study, we show how our approach
outperforms implementations that use the default partitioning
of Vivado HLS. For the Markov Chain application, we show
how HLS PolyMem enables performance gain with minimal
changes to the original software code. Finally, we present
the use of the masked methods in the LU decomposition
implementation.

A. Matrix multiplication

In this case study, we analyze the multiplication between two
square matrices, B and C, of size DIM , that are stored by
using either the default HLS array partitioning techniques or
the HLS PolyMem implementation. Since the multiplication
B×C is performed by accessing the rows of B and multiply-
accumulating the data with the columns of C, it is convenient,
when using HLS default partitioning, to partition B on the
second dimension and C on the first one. Indeed, this allows
to achieve parallel accesses to the rows of B and columns of C
in the innermost loop of the computation. On the other hand,
for the HLS PolyMem implementation, we store both B and
C in the HLS PolyMem , configured with a RoCo scheme,
because it allows parallel accesses to both rows and columns.
Listings 2 and 3 show the declaration of the matrices and

their partitioning using the HLS default partitioning and the
HLS PolyMem, respectively. In both listings, a parallel factor
of 16 has been used. The B and C HLS PolyMem instances
are initialized with p = 4 and q = 4, which results in
partitioning the data onto 16 memory banks.

Listing 2. Declaration and partitioning of matrices to parallelize accesses to
rows (dim=2) of B and to columns (dim=1) of C with a parallel factor of 16.

float B[DIM][DIM];
#pragma HLS array_partition variable=B

block factor=16 dim=2
float C[DIM][DIM];
#pragma HLS array_partition variable=C

block factor=16 dim=1

Listing 3. Declaration of the matrices stored by using the HLS PolyMem with
the RoCo scheme with a parallel factor of 4 · 4 = 16.

#include "hls_prf.h"
hls::prf<float, 4, 4, DIM, DIM, SCHEME_RoCo> B;
hls::prf<float, 4, 4, DIM, DIM, SCHEME_RoCo> C;

Listings 4 and 5 show the matrix multiplication code when
using the HLS default partitioning and the HLS PolyMem,
respectively.

Listing 4. Matrix multiplication code that leverages default HLS partitioning
to perform parallel accesses.

// B*C matrix multiplication
for (int i = 0; i < DIM; ++i)
for (int j = 0; j < DIM; ++j) {

#pragma HLS PIPELINE II=1
float sum = 0;
for (int k = 0; k < DIM; ++k)

sum += B[i][k] * C[k][j];
OUT[i][j] = sum;

}

Listing 5. Matrix multiplication code that exploits the HLS PolyMem with
RoCo scheme to perform parallel accesses.

// B*C matrix multiplication
for (int i = 0; i < DIM; ++i)
for (int j = 0; j < DIM; ++j) {

#pragma HLS PIPELINE II=1
float sum = 0;
for (int k = 0; k < DIM; k += 16) {

B.read_block(i, k, temp_row, ACCESS_Ro);
C.read_block(k, j, temp_col, ACCESS_Co);
for (int t = 0; t < 16; t++)

sum += temp_row[t] * temp_col[t];
}
OUT[i][j] = sum;

}

Even though both approaches achieve the goal of computing
the matrix multiplication by accessing 16 matrix elements in
parallel, the HLS PolyMem solution provides more flexibility
when additional data access patterns are required, which is
often the case for larger kernels. In order to highlight this
aspect, we also consider a kernel function in which both the
B × C and the C ×B products need to be computed.
Table II reports the latency and resources utilization estimated

by Vivado HLS when computing the matrix multiplication
B × C (rows 1,2), and when computing B × C followed by
C × B (rows 3,4 and 5,6) for the two approaches. By using
the default Vivado HLS partitioning techniques, the second
multiplication B×C cannot be computed efficiently due to the
way in which the matrix data is partitioned into the memory
banks, as described in Section II. Indeed, C can only be
accessed in parallel by rows and B by columns. On the other
hand, the implementation based on HLS PolyMem is also
capable of performing the matrix product C × B efficiently.
This is also reflected in the estimated latency reported in Table
II, which is the same for both products.
It is also worth noting that for matrix size of 32, the

two approaches have similar resource consumption, while for

TABLE II
LATENCY AND HARDWARE RESOURCES FOR MATRIX

MULTIPLICATION WITH DIFFERENT MEMORY CONFIGURATIONS
AND MATRIX DIMENSIONS

Memory Matrix Parallel Latency Hardware resources

size factor B × C C ×B BRAM DSP FF LUT

HLS 32 4 4227 n.a. 18 40 6162 6485
PolyMem 32 2 · 2 4227 n.a. 18 40 6153 6018

HLS 32 4 4227 16503 18 40 7444 9197
PolyMem 32 2 · 2 4227 4227 18 40 7367 7364

HLS 96 16 28033 442722 96 164 28554 40474
PolyMem 96 4 · 4 28033 28033 96 160 30969 43636

matrices with larger dimensions and a parallel factor of 16,
the HLS PolyMem has a resource consumption overhead
in terms of FF and LUT of at most 8.5% compared to
the HLS default partitioning schemes. Finally, in order to
empirically validate the designs, we implemented the kernel
module performing both B×C and C×B with matrix size of
96 and a parallel factor of 16 on a Xilinx Virtex-7 VC707 with
a target frequency of 100MHz. The HLS PolyMem achieved
a read and write throughput of 0.4 GB/s and a speedup of
5x compared to the implementation based on default HLS
memory partitioning.

B. Markov Chain and the Matrix power operation

A Markov Chain is a stochastic model used to describe real-
world processes. Some of the most relevant applications are
found in queuing theory and study of population growths [8],
while they are also used in stochastic simulation methods such
as Gibbs sampling [9] and Markov Chain Monte Carlo [10].
Moreover, Page Rank [11], an algorithm used to rank websites
by search engines, leverages a time-continuous variant of this
model. A Markov Chain can also describe a system composed
of multiple discrete states, where the probability of being in
a state depends only on the previous state of the system.
A Markov Transition Matrix A, which is a variant of an
adjacency matrix, can be used to represent a Markov Chain. In
this matrix, each row contains the probability to move from the
current state to any other state of the system. More specifically,
given two states i and j, the probability to transition from i
to j is ai,j , where ai,j is the element at row i and column j
of the transition matrix A.
Computing the h-th power of the Markov Transition Matrix

is a way to determine what is the probability to transition
from an initial state to a final state in h steps. Furthermore,
when the number of steps h tends to infinity, the result of
Ah can be used to recover the stationary distribution of the
Markov Chain, if it exists. From a computational perspective,
an approximate value for the result of limx→∞Ax is obtained
for large enough values of x. In our implementation, matrix A
is stored in a HLS PolyMem, so that both rows and columns
can be accessed in parallel, then, we compute A2 and save the
result into a support matrix A temp, partitioned on the second
dimension. After A2 is computed, we can easily compute A2h

by copying back results to the HLS PolyMem and iterating the
overall computation h times. Implementing the same algorithm
by using the HLS partitioning techniques, as presented in the
previous case study, results in poor exploitation of the available

p=2 q=2 b=2 p=1 q=1 b=4p=4 q=4 b=1

1 PolyMem 4 PolyMem NO PolyMem

Fig. 5. Comparison between different partitioning of the input matrix
in a grid of b2 components implemented by PolyMem with a level
of parallelism of p× q. When both p and q are set to 1, it is possible
to remove the HLS PolyMem logic.

parallelism, or in duplicated data, since A needs to be accessed
both by rows and columns.
The HLS PolyMem enables paralell accesses to matrix A for

both rows and columns, but adds to the design an overhead
in terms of hardware resources and complexity of the logic
to shuffle data within the right memory banks. The resources
overhead has a quadratic growth with respect to the number
p · q of parallel memories used to store data [4].
A possible solution to this problem, is to reduce the dimension

of PolyMem by dividing the A input matrix and store the
values in a grid of multiple PolyMems. If A has dimension
DIM ×DIM , it is possible to organize the on-chip memory
to store data in a grid of b × b squared blocks each having
size DIM

b × DIM
b . In order to preserve the same level of

parallelism, we can re-engineer the original computation to
work in parallel on the data stored in each memory within the
grid. Instead of computing a single vectorized row-column
product, it is possible to perform the computation on multiple
row-column products in parallel and reduce the final results.
Figure 5 shows how the input matrix is divided in multiple

memories according to the choice of the parameters p, q and
b. Moreover, the figure also shows which is the data accessed
concurrently at each step of the computation. As an example,
for the case p = q = b = 2 there are 4 row-column products
performed in parallel (b2) and for each of them 4 values are
processed in parallel (p · q).
It is important to notice that when p = q = 1 the PolyMems

reduce to memories in which a single element is accessed in
parallel. In this case, each PolyMem can be removed and
substituted by a single memory bank.
In Table III we report the latency and the resource utilization

estimated by Vivado HLS together with the number of lines of
code (LOC) for different configurations of the parameters p, q
and b on 8 iterations of the power operation for a 384x384
matrix. As can be seen, by re-engineering the code and the
access patterns (b > 1), it is possible to achieve a smaller
overall latency. However, this comes at the cost of a more
convoluted code which is approximately twice the lines of
code of the original version. On the contrary, by using a single
PolyMem (b = 1) we can still obtain higher performance than
using the default HLS array partitioning techniques, with a
much smaller and simpler code base. Indeed, PolyMem allows
to reduce the time to develop an optimized FPGA-based
implementation of the algorithm with minor modifications to

TABLE III
LATENCY, HARDWARE RESOURCES AND LINES OF CODE, FOR 8

ITERATIONS OF THE MATRIX POWER OPERATION WITH DIFFERENT
MEMORY CONFIGURATIONS AND A MATRIX SIZE OF 384

Memory p q b Latency
Hardware resources

LOC
BRAM DSP FF LUT

PolyMem 2 2 1 1,557,835,871 1,036 14 9,936 11,071 98
PolyMem 2 4 1 840,333,407 1,044 17 19,678 28,855 98
PolyMem 4 4 1 488,632,423 1,060 31 36,138 53,621 98

multi PolyMem 1 1 2 758,085,955 1,036 14 6,967 5,572 188
multi PolyMem 1 2 2 394,149,976 1,044 28 14,709 12,934 188
multi PolyMem 2 2 2 214,032,480 1,060 45 24,845 22,418 188
NO PolyMem 1 1 4 101,848,419 1,124 76 32,852 13,706 188

the original software code. Thanks to HLS PolyMem we raise
the level of abstraction of parallel memory accesses, thus
enhancing the overall design experience and productivity.
Finally, to validate the flexibility the HLS PolyMem library,

we implemented and tested the application by using Xilinx
SDx tool, that enables OpenCL integration and automatically
generates the PCIe drivers for communication. We synthesized
a design for a matrix size of 256 and parameters p = q = b =
2 at 200MHz, and we benchmarked its performance on the
Xilinx Kintex Ultrascale ADM-PCIE-KU3 platform, obtaining
a read and write throughput of 1.6 GB/s.

C. LU decomposition

The last case study we present is the LU decomposition
algorithm. This algorithm allows to decompose an input matrix
A into a product of a lower triangular matrix L and an upper
triangular matrix U :

A = LUa00 a01 a02
a10 a11 a12
a20 a21 a22

 =

 1 0 0
l10 1 0
l20 l21 1

u00 u01 u02

0 u11 u12

0 0 u22

This factorization is used in many applications, such as
solving linear equations or compute the inverse of a matrix.
Furthermore, such application has been proved to be suitable
for hardware acceleration [12]–[14].
Listing 6 shows the LU decomposition algorithm. Matrix A

is given as input, and matrices L and U are computed while
matrix A is zeroed.

Listing 6. LU decomposition algorithm
for(k=0; k<DIM; k++){
for(i=k; i<DIM; i++){
L[i][k] = A[i][k] / A[k][k];
U[k][i] = A[k][i];

}
for(i=k; i<DIM; i++)
for(j=k; j<DIM; j++)

A[i][j] = A[i][j] - L[i][k] * U[k][j];
}

Analyzing the loops, it is possible to see that the algorithm
works on successive sub-matrices, identified by the iterator
of the outermost loop k. In the first nested loop, matrix A is
accessed both column-wise and row-wise. The results of those
statements are respectively stored column-wise in matrix L and
row-wise in matrix U . Finally, the second nested loop updates
matrix A before starting the new iteration.

This brief analysis shows that this implementation of the
LU decomposition algorithm uses interleaved row-wise and
column-wise accesses to the same matrix; moreover, due to
the offset introduced by iterator k, those accesses could be
unaligned. Even in this case, HLS PolyMem represents a valid
solution to parallelize the read and write operations.

Matrix A stored using a PolyMem with p=2, q=2

k = 0

k = 1

k = 2

Fig. 6. Three iterations of loop k (rows of the figure) and the iterations
of the nested loop (columns of the figure) to update in parallel blocks
of values of the HLS PolyMem where input and output are stored.
The writes are performed by using the write block masked method:
the black cells of the matrices correspond to the 0 values of the passed
mask and they are not written in the HLS PolyMem memory.

Unaligned accesses to the matrix represent an interesting case
study and they are supported by the HLS PolyMem implemen-
tation. Furthermore, by exploiting the fact that the values of
the matrix A are iteratively zeroed and the structure of the
L and U matrices, we can store the entire computation on a
single HLS PolyMem memory. The final L and U matrices
are stored as follows:u00 u01 u02

l10 u11 u12

l20 l21 u22

Depending on the value of the iterator k, the amount of
data to be processed might not be a multiple of the parallel
factor being used. For this reason, special care must be taken
when dealing with the last block being processed as shown
in figure 6. To avoid to overflow the matrix dimensions, the
last block is computed out of the loop, and always starts at
an offset of DIM − (p · q). Then, an appropriate write mask
is applied to ensure that only the needed data is written to
the HLS PolyMem memory. In order to enable this solution,
we implemented the method write block masked that allows
to pass a mask of bits that represent the positions of values
within the block that need to be written. Since this method
adds some logic to solve the mask, we use it only while
updating the last block, out of the nested loop. Thanks to the
introduction of this class of methods, we simplify the adoption
of the HLS PolyMem for a broader set of applications.

V. CONCLUSIONS

In this paper, we presented a C++ implementation of Poly-
Mem optimized for Vivado HLS, ready-to-use as a library for
applications requiring parallel memories. Our implementation
exposes an easy-to-use interface to enhance design productiv-
ity for FGPA-based applications. Furthermore, we extended
the original PolyMem implementation to support masked on-
chip parallel accesses.
We proved the flexibility of the library among the Xilinx

Design Tools, by implementing the kernels for both the Vivado
workflow with a Virtex-7 VC707 and the SDx workflow with a
Kintex Ultrascale 3 ADM-PCIE. Our empirical analysis of our
library on three case studies (Matrix multiplication, Markov
Chains, and LU decomposition) demonstrated competitive
results in terms of latency, low code complexity, but also a
small overhead in terms of hardware resource utilization.
Our future work focuses on (1) including support for ad-

ditional PolyMem schemes optimized for Vivado HLS, (2)
designing an automatic framework to analyze the user appli-
cation code and suggest how to improve its performance with
HLS PolyMem, and (3) improving the HLS PolyMem shuffle
module by exploiting a Butterfly Network [15] for the memory
banks connections.

REFERENCES

[1] Xilinx, “Vivado high-level synthesis.” [Online]. Available: https://www.
xilinx.com/products/design-tools/vivado/integration/esl-design.html

[2] M. Weinhardt and W. Luk, “Memory access optimisation for reconfig-
urable systems,” IEE Proceedings-Computers and Digital Techniques,
vol. 148, no. 3, pp. 105–112, 2001.

[3] C. B. Ciobanu et al., “MAX-PolyMem: High-Bandwidth Polymorphic
Parallel Memories for DFEs,” in RAW2018 (to appear), pp. 1–8.

[4] C. Ciobanu, “Customizable Register Files for Multidimensional SIMD
Architectures,” Ph.D. dissertation, TUDelft, The Netherlands, 2013.

[5] C. Ciobanu et al., “Scalability Study of Polymorphic Register Files,” in
Proc. of DSD, 2012, pp. 803–808.

[6] C. B. Ciobanu et al., “Max-polymem: High-bandwidth polymorphic
parallel memories for dfes,” in IEEE IPDPSW - RAW’18, May 2018,
pp. 107–114.

[7] ——, “EXTRA: An Open Platform for Reconfigurable Architectures,”
in Proceedings of SAMOS XVIII (to appear), July 2018, pp. 1–10.

[8] J. J. Arsanjani et al., “Integration of logistic regression, markov chain
and cellular automata models to simulate urban expansion,” Inter-
national Journal of Applied Earth Observation and Geoinformation,
vol. 21, pp. 265–275, 2013.

[9] A. F. Smith and G. O. Roberts, “Bayesian computation via the gibbs
sampler and related markov chain monte carlo methods,” Journal of the
Royal Statistical Society. Series B (Methodological), pp. 3–23, 1993.

[10] W. R. Gilks et al., Markov chain Monte Carlo in practice. CRC press,
1995.

[11] S. D. Kamvar et al., “Extrapolation methods for accelerating pagerank
computations,” in Proceedings of the 12th international conference on
World Wide Web. ACM, 2003, pp. 261–270.

[12] G. Govindu et al., “A high-performance and energy-efficient architecture
for floating-point based lu decomposition on fpgas,” in Parallel and Dis-
tributed Processing Symposium, 2004. Proceedings. 18th International.
IEEE, 2004, p. 149.

[13] V. Daga et al., “Efficient floating-point based block lu decomposition
on fpgas,” in International Conference on Engineering of Reconfigurable
Systems and Algorithms, Las Vegas, 2004, pp. 21–24.

[14] M. K. Jaiswal and N. Chandrachoodan, “Fpga-based high-performance
and scalable block lu decomposition architecture,” IEEE Transactions
on Computers, vol. 61, no. 1, pp. 60–72, 2012.

[15] A. Avior et al., “A tight layout of the butterfly network,” Theory of
Computing Systems, vol. 31, no. 4, pp. 475–488, 1998.

