
On how to efficiently implement Deep Learning
algorithms on PYNQ platform

Luca Stornaiuolo, Marco D. Santambrogio, Donatella Sciuto

Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria (DEIB), Milan, Italy
{luca.stornaiuolo, marco.santambrogio, donatella.sciuto}@polimi.it

Abstract—Deep Learning algorithms are gaining momentum
as main components in a large number of fields, from computer
vision and robotics to finance and biotechnology. At the same
time, the use of Field Programmable Gate Arrays (FPGAs) for
data-intensive applications is increasingly widespread thanks to
the possibility to customize hardware accelerators and achieve
high-performance implementations with low energy consumption.
Moreover, FPGAs have demonstrated to be a viable alternative
to GPUs in embedded systems applications, where the benefits
of the reconfigurability properties make the system more robust,
capable to face the system failures and to respect the constraints
of the embedded devices. In this work, we present a framework
to efficiently implement Deep Learning algorithms by exploiting
the PYNQ platform, recently released by Xilinx. The case study
application is tested on PYNQ-Z1 board, commonly used in
embedded system applications.

I. INTRODUCTION

Deep Neural Networks (DNNs) are a set of algorithms
inspired from brain neurons behavior used to recognize pat-
terns. They are becoming a pervasive solution in a huge
amount of fields, from computer vision, smart vehicles and
robotics to finance, medicine and decision making. In these
domains, Machine Learning approach is proved to be valuable
to automate the prediction processes based on the available
data and on real-time signals acquisition [1].

This, combined with the widespread of the Internet of
Things (IoT) paradigm [2], opens new challenges for embed-
ded system devices. The number of connected objects that
acquire signals from the physical world, send data to related
applications and get back the information to act, is increasing
in quantity and variety and this increases also the whole system
complexity. In this context, the embedded system devices have
to face many problems, ranging from dealing with the possible
system failures to adapting themselves to the physical world
changes [3].

One possible solution to solve these challenges is the
development of intelligent embedded system devices, able to
take care of their own healing and to adapt their behavior ac-
cordingly with the environmental variations. Even if Machine
Learning algorithms seem to be the right solution to face the
system adaptation and its self-healing capabilities, they require
a high computational power. Moreover, the embedded devices
physical constraints require a low energy consumption, also to
reduce the system warm and the possible derived damages [4].
For these reasons, Field-Programmable Gate Arrays (FPGAs)

devices represent a suitable architecture to fit such require-
ments. In addition, their reconfigurable properties make the
system more flexible with respect to different contexts, but
also adaptable to changes within the same context.

In this paper we present a framework to help data scientists
and FPGA-based IPs designers to deploy their deep learning
algorithms on a Xilinx Zynq SoC by exploiting the recently
released PYNQ platform. In particular, the main contributions
of our work are declined as a framework able to:

1) automatically create the required interface to transfer data
from the Processing System to the accelerated version of
the DNN implemented on the Programmable Logic by
following the dataflow paradigm;

2) help in designing the routine to deal with system failures
by exploiting the behavior of DNNs and the reconfig-
urable properties of the system.

The rest of this paper is divided as follow: in Section II
and III we describe the relation between DNNs and the Xilinx
PYNQ platform and discuss related work; in Section IV we
propose our framework; in Section V we discuss about our
solution and the future work and Section VI contains the
conclusion.

II. BACKGROUND

In this section, we discuss why FPGAs are a valid solution
to improve performances of Deep Learning algorithms and we
analyze the advantages of the recently released Xilinx PYNQ
platform within the intelligent embedded system context.

A. Deep Neural Networks and FPGAs

DNNs are a subclass of Neural Networks contains multiple
hidden layers that propagate weighted sums of input data to
the output layer. They also apply a non-linear function to such
sums to generate an output only when a certain threshold is
crossed. This behavior is inspired from brain neurons and it
is used to recognize recurrent patterns between input data and
the related output [5].

Although Neural Networks birth dates back to 1940s, in
the recent years, the huge amount of available data together
with the high compute capacity and the algorithmic techniques
improvement have driven DNNs to their today success [6].
In this context, many different hardware platforms have been
targeted with the aim to improve DNNs throughput and energy
efficiency. Graphics Processing Units (GPUs) are the most



common employed solution to exploit hardware parallelism
and execute multiple DNNs multiply-and-accumulate opera-
tions at the same time. The huge widespread of GPUs has
been achieved also thanks to the investment done by the
big technology companies, like NVIDIA, to create a set of
frameworks and platforms to raise the level of abstraction
required to exploit them. Examples are CUDA1 and OpenCL2

that have allowed GPUs integration in Machine Learning
frameworks and libraries like Caffe3, Dlib4, and TensorFlow5.
However, GPUs exploitation requires high power consump-
tion and this represents a limitation in many Deep Learning
domains where the computational devices are required to
be mobile or embedded ad they need to fit rigid physical
constraints.

To overcome this problem, FPGAs can largely reduce the
power consumption, while remaining competitive in terms of
execution time. In particular, we can exploit spatial architec-
ture of FPGAs to take advantage of the memory hierarchy
and reduce the energy costs of data accesses. Since the most
efficient memory is also the most limited one, it is necessary
to design the system to follow the dataflow paradigm and to
get benefit from data reuse, taking into consideration that the
processing of DNNs is deterministic.

B. PYNQ platform and Intelligent Embedded Systems

PYNQ6 is a platform built on top of Xilinx Zynq SoC
technology to allow software developers exploiting the Pro-
grammable Logic of the board directly from Python appli-
cations. In this way, FPGA-based IPs designers can provide
their optimized functions ready to be used, with the same
abstraction level of software libraries. These libraries able
to exploit the heterogeneous hardware architecture of the
Zynq SoC are also named hardware libraries or overlays. The
boards PYNQ-Z1 is the first released board that support the
PYNQ platform. The Xilinx official base overlays allows to
control the 12-pin PMOD connectors, an Arduino-compatible
interface and Audio/Video I/O. The energy efficiency and the
flexibility of the Programmable Logic together with the Python
productivity and the peripherals control make the PYNQ-Z1
board an efficient solution as embedded device.

With the advent of the Fog Paradigm part of the computation
and data preprocessing is offload to the leaf nodes of the
system, where signals are collected. The possibility of adding
also intelligent mechanisms within this distributed scenario
allows each node to learn from external stimuli, adapt to
change and make decisions. These capabilities can also be
used to face system failures at different hierarchical level. In
particular, in the scenario where a leaf node of a fog distributed
system is represented by a PYNQ-Z1 board, that acquires
raw data and fast preprocesses them before sending results

1https://developer.nvidia.com/cuda-zone
2https://www.khronos.org/opencl/
3http://caffe.berkeleyvision.org/
4http://dlib.net/ml.html
5https://www.tensorflow.org/
6http://www.pynq.io/

to the next layer of the network, the ability of recognizing
failures and dealing with self-healing by reconfiguring the
Programmable Logic, prevents performance reduction of the
entire system and errors cascade effects.

III. RELATED WORK

In this section, we provide an overview of the related work
that regards the DNNs implemented on embedded systems and
the frameworks to help with their development.

DNNs are characterized by two different phases. The
training phase, used to process already available data and
to compute the model weights, requires high computational
power and takes a huge amount of time to be computed. On
the other hand, the inference phase, used to process the new
data and find known patterns, is suitable to be implemented
on embedded systems [6]. In this context, different techniques
to reduce the complexity are often used [7]. As an example,
binary weights are adopted in [8], where PYNQ platform
is exploited to take advantages from the high performance
with respect to a low power consumption, and in [9], where
the integration of TensorFlow with embedded devices is per-
formed. Together with the complexity reduction techniques,
a lot of framework to help hardware designer of DNNs are
released. As an example, [10] is a framework to efficiently
map binarized neural networks to hardware and [11] is used
to reduce the FPGA hardware resources.

IV. PROPOSED APPROACH

This section describes the main components of our frame-
work to help data scientists and FPGA-based IPs designers to
deploy their deep learning algorithms on a Xilinx Zynq SoC
by exploiting the recently released PYNQ platform. Firstly, we
modeled and generalized the communication from Processing
System to Programmable Logic for dataflow applications in
order to automatize the interfaces creation to send data to the
accelerated version of a DNN and get back results. Then, we
provide a routine to recover running system from a specific
failure by reconfiguring the FPGA.

A. Dataflow Communication Interface creation for DNN

Input data of a DNN is the set of values representing
the information to be analyzed. For instance, in computer
vision domain input can be pixels of an image, in speech
and language domain input can be an audio wave, in problem
solving domain input can be the current state of some game.

As described in Section II, the dataflow paradigm is the
best solution to improve the energy efficiency and exploit
data reuse, when implementing DNNs on an FPGA. Since
the processing of DNNs does not contain randomness, the
dataflow design in term of data type and number of values to
be exchange between Processing System and Programmable
Logic is known in advance. When the FPGA-based DNN
developer decides how to use each memory of the available
memory hierarchy, he has to take into account that on-chip
BRAM is faster and more efficient than DRAM, but it is very



Processing System Programmable Logic

DRAM

DMA

DMA

DMA 
drivers

Python
application

DNN
kernel

Zynq SoC

Peripherals Peripherals

BRAM

Fig. 1. Main system components overview.

limited. For this reason, the data reuse becomes very impor-
tant, when some values are transferred to the Programmable
Logic from the higher costly DRAM of the board.

Figure 1 shows the main system components. We can divide
the framework semi-automatic creation of interfaces in three
phases following a bottom-up approach:

1) Design Level Integration
Designing the FPGA-based version of DNN for the
PYNQ-Z1 board following the dataflow paradigm re-
quired the presence of one or more Direct Memory
Access (DMA) IPs to stream data from the DRAM to the
computational kernel on the Programmable Logic. DMAs
can be added in the Vivado block design phase and can
be connected to the input interfaces of the user custom
IP. To do that the FPGA-based DNN developer has to
add an AXI4-Stream interface for each input and output
stream of the computational kernel. The framework can
auto generate such interfaces by knowing the data type
of each stream. The following snippet of Vivado HLS
pseudo code shows a very simple example in which the
kernel reads a stream of integer points from an input
stream and writes the same points to an output stream.

#include <hls_stream.h>

struct data_struct{
int data;
bool last;

};

void computational_kernel(
hls::stream<int> &s_in,
hls::stream<data_struct> &s_out

) {
#pragma HLS INTERFACE axis port=s_in
#pragma HLS INTERFACE axis port=s_out
#pragma HLS INTERFACE ap_ctrl_none port=return

data_struct out_data;
for (int i = 0; i < NUMBER_OF_POINTS; i++)

#pragma HLS PIPELINE II=1
out_data.data = s_in.read();
if (i == (NUMBER_OF_POINTS - 1))

out_data.last = 1;
else

out_data.last = 0;

s_out.write(out_data);
}

}

The first two HLS INTERFACE pragmas define the
AXI4-Stream type of the kernel parameters. The last HLS
INTERFACE pragma allows the computational kernel to
start as soon as the data on the input stream are available,
without the needing of programmatically start the IP
computation. The specific output data structure will be
automatically mapped to a set of pins that are able to
transfer data and inform the system when the last point is
sent, so that the receiver can close the transfer connection.
Finally, the NUMBER OF POINTS variable depends on
the kernel design and in DNN computation is known in
advance.

2) Processing System Level Integration
The second step of our framework interfaces generation
consists of integrating the drivers to command the DMAs
directly from the Processing System. We exploit the
Python/C API to achieve the fastest possible performance
when exposing the drivers functions to the user appli-
cation. The following snippet of C pseudo code shows
how to manage the stream transfers by exploiting two
instanced DMAs connected respectively with the input
and the output streams of the computational kernel.

// ==== OPEN STREAM TO WAIT RESULTS ====
XAxiDma_SimpleTransfer(

DMAinstance2,
(uint32_t *) FPGA_receive_buffer,
NUMBER_OF_POINTS,
DMA_FROM_FPGA);

// ==== SEND POINTS ====
XAxiDma_SimpleTransfer(

DMAinstance1,
(uint32_t *) FPGA_send_buffer,
NUMBER_OF_POINTS,
DMA_TO_FPGA);

// ==== WAIT ALL POINTS ARE SENT ====
while (XAxiDma_Busy(DMAinstance1, DMA_TO_FPGA))

;



// ==== WAIT ALL RESULTS ARE RECEIVED ====
while (XAxiDma_Busy(DMAinstance2, DMA_FROM_FPGA))

;

3) Python Level Integration
At the user application level, the Python data types need
to be cast to satisfy the requirements of the computational
kernel. For this reason, we exploit the NumPy library
together with the CFFI Python module to deal with data
casting. Moreover, a data verification process is added to
avoid that the algorithm is called with the wrong inputs.
This avoid computational kernel crashes due to wrong
data representations. The following snippet of Python
pseudo code shows how to manage the data casting and
how to add a possible input format check.

def fpga_kernel(input_data):

if len(input_data) != NUMBER_OF_POINTS:

raise ValueError("Wrong input dimensions")

else:

buff_dma_in = cffi.FFI().cast("int *")

buff_dma_out = cffi.FFI().cast("int *")

cffi.FFI().memmove(buff_dma_in, input_data)

fpga_kernel_driver_interface(

DMAinstance1,

DMAinstance2,

buff_dma_in,

buff_dma_out

)

received_data = cffi.FFI().buffer(buff_dma_out)

results = frombuffer(received_data, dtype=int32)

return results

B. System Failure Recovery

The inference phase of DNNs, unlike the training one that
requires high computational needs and a long execution time,
can be part of real-time data processing at the embedded
systems level. Taking into consideration the integration with
the PYNQ platform explained in the previous section, it
is possible to identify at the application level the average
execution time of the DNN optimized kernel, given a fixed
input/output dimension and fixed data types. This value can
be obtained empirically with a calibration phase or can be set
as a threshold from a domain expert user. The proposed routine
measures the execution time of each computational kernel
function call and based on some accuracy thresholds can
recognize some kernel errors or interruptions. If an anomaly
is detected, the routine kills the current computational kernel
function call, reconfigures the Programmable Logic and starts
the next input processing. If a list of subsequent anomalies are
detected, the routine can generate a system alarm or slightly
modify the thresholds to try to understand the failure nature.

V. DISCUSSION AND FUTURE DIRECTIONS

Together with the related work, the solution proposed in this
paper represents a starting step to create a solid framework-

based infrastructure to integrate FPGAs within the Deep
Learning field. Since this process is started earlier for GPUs,
nowadays they represent the most used solution, even if
other hardware architectures could be integrated at different
applications levels, bringing benefits to the whole system.

As future work, we want to allow framework exploiting the
partial configuration property of the Programmable Logic to
better face system failures. Moreover, we are going to improve
the failures predictive model by integrating machine learning
techniques in the proposed routine. Finally, we are planning to
integrate the framework with the most used Python libraries
for Deep Learning models implementation.

VI. CONCLUSIONS

In this paper, we presented a framework to integrate Deep
Learning algorithms on the PYNQ-Z1 at the embedded system
level. In particular the proposed solution help data scientists
and hardware developers to generate the required interfaces
to interact with the FPGA-based implementation of the DNN
algorithm and integrate it within the PYNQ platform. This is
done through the generalization of the DNN data management
within different domains. Finally, we proposed a routine to
face embedded system failure at the Programmable Logic
level.

REFERENCES

[1] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1.

[2] K. Ashton et al., “That ‘internet of things’ thing,” RFID journal, vol. 22,
no. 7, pp. 97–114, 2009.

[3] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in non-
stationary environments: A survey,” IEEE Computational Intelligence
Magazine, vol. 10, no. 4, pp. 12–25, 2015.

[4] C. Alippi, G. Anastasi, M. Di Francesco, and M. Roveri, “Energy
management in wireless sensor networks with energy-hungry sensors,”
IEEE Instrumentation & Measurement Magazine, vol. 12, no. 2, 2009.

[5] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[6] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[7] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[8] “Bnn-pynq,” https://github.com/Xilinx/BNN-PYNQ/.
[9] “Binary networks from tensorflow to embedded devices,” https://github.

com/jonathanmarek1/binarynet-tensorflow.
[10] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,

and K. Vissers, “Finn: A framework for fast, scalable binarized neural
network inference,” in Proceedings of the 2017 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays. ACM, 2017,
pp. 65–74.

[11] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2015, pp. 161–170.


